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Abstract

Invasive species are well known to cause millions of dollars of economic as well as ecological damage

around the world. New Zealand, as an island nation, is fortunate because it has the opportunity

to regulate and monitor travel and trade to prevent the establishment of new species. Nevertheless

foreign species continue to arrive at the borders and continue to cross them, thus requiring some

form of management. The control and management of a new incursion of an invasive species would

clearly bene�t from predictive tools that might indicate where and how quickly the species is likely

to spread after it has established. During the process of spread an invasing species must interact

with a complex and heterogeneous environment and the suitability of the habitat in a region

determines whether it survives. Many dispersal models ignore such interactions and while they

may be interesting theoretical models, they are less useful for practical management of invasive

species.

The purpose of this study was to create and investigate the behaviour of a spatially explicit

model that simulates insect dispersal over realistic landscapes. The spatially explicit model (Mod-

ular Dispersal in GIS, MDiG) was designed as am open-source modular framework for dispersal

simulation integrated within a GIS. The model modules were designed to model an an approxi-

mation of local di�usion, long distance dispersal, growth, and chance population mortality based

on the underlying suitability of a region for establishment of a viable population. The spatially

explicit model has at its core a dispersal module to simulate long distance dispersal based an

underlying probability distribution of dispersal events. This study illustrates how to extract the

frequency of long distance dispersal events, as well as their distance, from time stamped occurrence

data, to �t a Cauchy probability distribution that comprises the dispersal module.

An investigation of the long distance dispersal modules behaviour showed that, in general, it

generated predictions of the rate of spread consistent with those of analytical partial di�erential

and integro-di�erence equations. However, there were some di�erences. Spread rate was found

to be mainly dependent on the measurement technique used to determine the invasion front or
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boundary, therefore an alternative method to determine the boundary of a population for fat-tailed

dispersal kernels is presented. The method is based on the point of greatest change in population

density. While previously it was thought that number of foci rather than foci size was more

important in strati�ed dispersal and that �ner resolution simulations would spread more quickly,

simulations in this study showed that there is an optimal resolution for higher spread rates and

rate of area increase. Additionally, much research has suggested that the observed lag at the

beginning of an invasion may be due to lack of suitable habitats or low probability of individuals

striking the right combination of conditions in a highly heterogeneous environment. This study

shows an alternative explanation may simply be fewer dispersal event sources.

A case study is described that involved the application of the spatially explicit dispersal model

to Argentine ant spread to recreate the invasion history of that species in New Zealand. Argentine

ant is a global invasive pest which arrived in New Zealand in 1990 and has since spread to both

main islands of New Zealand, primarily through human mediated dispersal. The spatially explicit

simulation model and its prediction ability were compared to that of a uniform spread model

based on equivalent total area covered. While the uniform spread model gave more accurate

predictions of observed occurrences early in the invasion process it was less e�ective as the invasion

progressed. The spatially explicit model predicted areas of high probability of establishment (hot

spots) consistent with where populations have been found but accuracy varied between 40-70%

depending on the year of the simulation and parameter selection. While the uniform spread model

sometimes slightly outperformed or was equivalent to the simulation with respect to accuracy early

in the invasion process, it did not show the relative risk of establishment and was less e�ective

later in the invasion when stochastic random events generated by the simulation model were

averaged to represent trends in the pattern of spread. Additionally, probabilistic predictions as

generated by the spatially explicit model allow the uncertainty of prediction to be characterised

and communicated.

This thesis demonstrates that heterogeneous spread models can give more insight and detail

than one dimensional or homogeneous spread models but that both can be useful at di�erent

stages of the invasion process. The importance of compiling appropriate data on dispersal and

habitat suitability to aid invasion management has been highlighted. Additionally, a number of

important hypotheses that need to be addressed to increase understanding of how species interact

with the complex environment, have been identi�ed and discussed.

Keywords: dispersal, spread, simulation, model, invasions, invasive insects, Argentine ant,

L. humile, GIS, framework.
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Chapter 1

Introduction

1.1 Biological Invasions

New Zealand has a unique array of ora and fauna which has arisen because of its isolation

from other land masses. Since the advent of colonisation, New Zealand’s ecosystems have had

to cope with a ood of new species. The burning of large swaths of bush during both pre-

and post-settlement resulted in a modi�ed and disturbed environment that would have been very

susceptible to the establishment of invasive species (Hobbs 2000). Initially, many plant and animal

species were intentionally introduced for agricultural development but have since developed into

pests after being found to be well adapted to the environment that exists in New Zealand. Insect

species, in addition to being carried by wind and ocean currents (Ward 1992, Gatehouse 1997),

were brought in with imported agricultural crops and bene�ted from the agricultural development

of their hosts.

Invasive species are estimated to cause damage in the order billions of dollars per year in

the United States alone (Pimentel et al. 2000) mainly from agricultural damage, but increasingly

from the cost of protecting ecological reserves. Worldwide, invasive species are a major threat to

biodiversity following, in particular, anthropogenic disturbances that result in habitat destruction

and fragmentation (Wilcove et al. 1998, Pimentel et al. 2001).

On top of increased carbon dioxide in the atmosphere, widespread changes in land use and land

cover, and the hunting and harvesting of natural species populations, invasions are considered to be

a signi�cant factor in global environmental change caused by the explosive growth of industry and

agriculture in the past two centuries (Vitousek et al. 1996). One of the important consequences of

the environmental change caused by biological invasions is that of global species homogenisation
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(Olden & Po� 2003) and the replacement of native species by invasive species that can cause

signi�cant impacts (Vitousek et al. 1997, Wilcove et al. 1998, Pimentel et al. 2005).

The biotic cost of invasions is most dramatic when non-native species take over a community

and completely alter landscape structure and ecosystem function (Vitousek et al. 1996) however

not all introduced species establish succesfully in new communities (Williamson & Fitter 1996) nor

do all introduced species spread much further than the original incursion site. Some may become

harmlessly naturalised into the local resident community (Richardson et al. 2000).

Clearly, it is desirable to prevent species arriving that may become pests and consequently

cause serious economic loss through damage to agricultural crops which are part of New Zealand’s

primary industry, or cause harm to New Zealand’s indigenous ora and fauna by disrupting ecosys-

tem processes or out-competing native species. However, the increase in human travel and cargo,

both locally (Group 2005), and internationally (Levine & D’Antonio 2003), has increased the

chances that many species establish outside of their native range and has made the task of pre-

vention increasingly di�cult. Increasing threats are shown in the United States of America by

the increase in interceptions on air passenger baggage (Liebhold et al. 2006) and through other

vectors of transport (McCullough et al. 2006). One example, among the many, of a species that

has had its worldwide distribution greatly enhanced by human-mediated dispersal is the Argentine

ant (see Chapter 5 and Suarez et al. 2001).

The time taken to cross large distances, which formerly isolated New Zealand from other

landmasses, has been shortened by commercial ight. These ights, along with other transport

methods, have been increasing in frequency world-wide (IUCN 1999) and in New Zealand (Whyte

2005a) as a result of globalisation. Speci�cally, over half a million sea containers were shipped

to New Zealand in 2004-2005, 57% more containers than 5 years previously. New airlines have

been founded and more ights connect to areas containing potentially damaging species such

as Asia and South America. These new ights and destinations have increased the number of

air passengers arriving in New Zealand to 4 million in 2005, a 30% increase over the previous

5 years (Whyte 2005b). The increased connectedness between urban centres has made urban

population size more highly correlated with the occurrence of outbreaks than distance between

cities, particularly for disease outbreaks (Cli� et al. 1981).

Thankfully there is some respite, as research suggests surprisingly small numbers of potential

invaders actually establish or have signi�cant impact. Williamson & Fitter (1996) coined the

"tens-rule", based on species introduced to the British ora. In their study Williamson & Fitter

(1996) found an estimated 10% of all introduced species actually become established, and of

those, only ten percent were invasive enough to spread and be considered pests. This rule, as an
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approximation, has been supported by analysis of the invasive species of other countries including

Germany (Kowarik 1995), the Netherlands (Weeda 1987), and France (Kornas 1990).

Regardless of the small percentage of introductions that have signi�cant impact, the increased

risk from large amounts of trade and tourism has increased the sense of urgency to understand

factors behind the anthropogenic distribution of propagules (Levine & D’Antonio 2003) and the

biological processes leading to establishment (Mack et al. 2000, Kolar & Lodge 2001). Additionally,

there is a real need to develop e�ective tools for invasion risk assessment (Hayes 1997, Simberlo�

& Alexander 1998, Mack et al. 2000, Kolar & Lodge 2001)

Such growth in travel and trade increases the threat of species invasion, but to combat that

threat, detection technologies need to continue to be improved (e.g. the proposed use of sensor

technologies as described by Goldson et al. 2002), as well as control and monitoring techniques

(Sharov et al. 2002).

The establishment of introduced species is often associated with severe ecological and economic

consequences (Mack et al. 2000, Pimentel et al. 2000). Preventing invasive species from arriving

in New Zealand is important to preserve the country’s endemic ora and fauna because invasive

species can reduce biodiversity (Human & Gordon 1997) and displace native speces (Holway

1998a). If organisms get past the procedures put in place to intercept them there is a chance that

the species may establish a reproducing population that may potentially spread further. If such a

population is detected in time and the species is judged to have the potential to cause ecological

and economic damage, then it is highly likely a decision will be made to eliminate it. However,

the eradication and control of invasive species is a costly process, 800 million dollars are spent in

New Zealand annually on invasive phtyphagous insect species alone, covering biosecurity activities

including surveying, control and research (Barlow & Goldson 2002).

It is therefore imperative that, upon the arrival of a foreign species, an appropriate government

agency carry out a pest risk analysis (if they have not already done so). This rick analysis must

be done as quickly as possible, estimating the potential damage the species may have on biological

production systems, including agriculture, forestry, and indigenous ecosystems. The resources are

not available to inspect all incoming cargo against potential invaders, or to mount an eradication

campaign for every species as soon as it is detected, therefore eradication or control actions must

be prioritized so as to minimise the damage caused by a species determined to have the potential

to spread over a large area and/or have a signi�cant negative impact.
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1.2 The process of invasion

Biological invasions are often divided into several stages from arrival to naturalisation. Hastings

(1996a) identi�es three phases: 1) the establishment of the invading species at a single location, 2)

the interaction with existing species in the community as a result of population growth, competition

and/or predation, and 3) the spatial spread of the invading species from the invasion origin. The

�rst phase can be preceded by an initial introduction phase where propagules of an invasive species

arrive but have yet to lead to establishment (Andow et al. 1990).

During the introduction phase, the propagules need to reach a stage where they can sustain a lo-

cal population. These introduced populations often go undetected because of their small numbers,

and many fail to become established because of inconsistently suitable climate (Mack 1995) and

Allee e�ects. Propagule pressure, or the temporal frequency and size of introductions, is clearly

an important factor in the establishment of introduced species (Kolar & Lodge 2001, Lockwood et

al. 2005, Von Holle & Simberlo� 2005). Establishment and the later process of naturalisation have

both been shown to correlate with propagule pressure, both in terms of the number of individuals

introduced and frequency of introduction events (Williamson & Fitter 1996, Grevstad 1999, Ko-

lar & Lodge 2001). These empirical �ndings are also consistent with the predictions made in

theoretical population biology (Richter-Dyn & Goel 1972).

Invasions, once established are often observed to have a lag time between initial introduction

and subsequent and obvious population growth. This lag time could be caused by a number of

factors, including weak Allee e�ects, or a small number of foci from which initially the species

can spread (Mack 1985). Ewel (1986) suggested lags could be due to a delay in suitable habitat

becoming available or a low probability of new propagules striking the right combination of envi-

ronmental conditions. These lag times, particularly for alien woody species, can last hundreds of

years (Kowarik 1995), although for some insect species, like the African bee, the lag time can be

almost entirely absent (Kerr 1967).

After a certain time, assuming the alien population continues to maintain itself, an invasive

species is usually observed to spread and undergo exponential population growth. It is at this

stage that an invasion becomes visible to environmental managers as the population numbers

and density increases. This growth and spread continues until further resources and suitable

environment become unavailable and then growth and spread slows as the population reaches an

equilibrium with its environment.

After a species establishes, the changing spatial pattern of its distribution and the increase in

area occupied by its population can usually be partitioned into the following periods (Fig. 1.1): an
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Figure 1.1: The increase in the area occupied by an invasive species’ population can be partitioned
into 3 stages of pioneering, expansion, and saturation (Shigesada et al. 1995)

early pioneering period as new sub-populations are established, a middle period with rapid change

as the population expands to new habitat, and a later period of condensing saturation or �ll-in

when new habitat and resources become scarce (Mollison 1987, Shigesada et al. 1995). Bromus

tectorum (cheatgrass) is one example that exhibited this pattern of increase in area as it spread

throughout the Great Basin of North America (Radosevich et al. 1997).

The main focus of this work with respect to the spatial spread of a invasive species is its range

expansion. However, for many invasions, all three stages can often occur concurrently due to

beach-head populations establishing ahead of the main invasion front (see section 2.3.2). These

advance populations may arrive via jump dispersal and essentially undergo the same process as

the original invasion, at least until the main invasion front catches up and envelopes the isolated

population. Since the three stages are all involved throughout the invasion process, they all need

to be considered in a model of invasive spread.

1.3 Factors that inuence invasion

Many factors inuence whether an invasion is successful. Clearly, during the establishment phase,

landscape and habitat disturbance is a major factor that favors invasions, particularly invasions of

alien plants. Pickett & White (1985) describes disturbance as ‘any relatively dicrete event in time

that disrupts ecosystem, community or population structure and changes resources or substrate

availability or the physical environment’. As such, these disturbances may be caused by large-

scale events such as ooding, �re, storms, or at a smaller scale by soil turnover or vegetation

removal (Hobbs 1991, Hobbs 2000). Human land-use patterns and the consequent disturbances

also enhance invasibility of landscapes (Hobbs 2000) and many environmental weeds of Australia
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have been associated with at least one type of disturbance that favour their establishment and

spread (Humphries et al. 1991).

There are many theories of invasion but perhaps the one that has attracted the most attention

has been the biotic resistance theory (Elton 1958). Biotic resistance is the theory that species

richness is an important variable controlling the invasibility of native ecosystems. Species poor

communities are argued to be more susceptable to invasion and thus they are said to have less

biotic resistance (Elton 1958, Pimm 1991). Early reasoning suggested that mainland species had

a superior competitive ability to those on smaller islands (Carlquist 1965). However, conversely

Huston (1994) and others suggest that diverse native communities, instead of being able to ‘resist’

invasion, are able to more easily accommodate invaders as high diversity implies greater resource

availability and weak interspeci�c interactions. Empirical evidence has been used to support both

conclusions, and Byers & Noonburg (2003) reason that the di�erence observed in community

invasibility correlated with species richness arises from the di�erences of scale in empirical studies.

At large spatial scales more exotics appear to invade species rich communities (e.g. Lonsdale 1999),

whereas at small scales, less exotics are observed to invade (e.g. Naeem et al. 1999).

There have also been several attempts to determine statistical associations between invasiveness

and life history traits (e.g. Scott & Panetta 1993, Reichard & Hamilton 1997, Kolar & Lodge 2001)

or taxonomic relationships (e.g. Daehler 1998, Pysek 1998). Although the invasiveness of a species

is still somewhat particular to each case, some biological traits that are considered to be correlated

with species invasiveness have been outlined by Rejm�anek (2000):

� �tness homeostasis, or in other words, an ability to maintain relatively constant �tness over

a range of environments.

� small genome size, which is usually associated with short generation time and high relative

growth rate.

� easily dispersed by humans and animals, which increases the chances a species is introduced

to a new region, greatly increasing the spread rate of the species.

Others suggest that invasions occur because of the \enemy release hypothesis of invasiveness"

(Keane & Crawley 2002) which speci�es that when introduced species leave their native predators

and parasites behind and they are introduced into a new community there is either a reallocation

of resources from enemy defence to growth (compensatory release), and/or a direct increase in

growth or survivorship (regulatory release) (Colautti et al. 2004). Blossey & N�otzold (1995) have

suggested that the absence of native predators might even drive evolution towards greater growth
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Figure 1.2: The spatial layout and structure of a landscape can a�ect each stage in the invasion
process. From With (2002).

rates . Thus a species that has strong mechanisms for compensatory or regulatory release, or a

relatively quick evolutionary rate may be more suited to being invasive compared to other species.

There is no doubt however that both human land-use patterns and global climate change are

major factors a�ecting the spread of invasive species (Mooney & Hobbs 2000). Habitat destruction

and fragmentation from anthropogenic disturbances are viewed as the leading threat to biodiversity

after the threat posed by invasive species (Wilcove et al. 1998) and consequently increase the risk

of invasion.

1.3.1 Landscape e�ects on the invasion process

The spatial structure of the landscape can impact on the invasion process in many ways (With

2002). Figure 1.2 lists some of the impacts at each stage from introduction to the spread of an

invasive species.
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The transformation of landscapes by humans has been rapid, and widespread (Whitney 1994),

making such rapid change increasingly important in the colonisation of invasives. Not only is

there a direct e�ect of human land-use patterns but such patterns can alter the ow of propagules

dispersed by humans indirectly. The distribution of disturbed sites that are prone to invasion

along with human land-use patterns that may enhance the invasibility of landscapes (Hobbs 2000)

inuence whether an alien species will colonise an area.

Also, successful establishment is dependent on the location of resources and habitat for popula-

tion survival and subsequent growth. The location of habitat and resources also a�ects the spread

of a population as individual dispersal and demography can be a�ected by landscape structure

(e.g. With 1994, With & King 1999, With & King 2001). It is clear that the inuence of landscape

pattern on the invasion process is inescapable, and spatial models can help us better understand

the interaction and potentially predict the direction an invasion will take. Landscape ecology is

the study of \the e�ect of pattern on process" (Turner 1989) or the study of the ecological con-

sequences of spatial pattern. The challenge is to apply the knowledge from landscape ecology to

the invasion process.

For example, Eppstein & Molofsky (2007) developed a theoretical model that incorporates

propagule pressure, frequency independent growth rates, feedback relationships, resource compe-

tition and spatial scale of these interactions. The model predicted one of four outcomes: inability

to establish, naturalization, unconditional takeover, or conditional invasion dependent on quan-

tity and spatial distribution of propagules. The latter scenario, where invasion is dependent on

the spatial distribution and quantity of propagules, highlights the important role that the spatial

pattern of population distributions plays in the success of an invasive species establishment.

1.4 Invasion Management

Decisions with respect to the management of an invasion depends on what stage in the invasion

process an alien species has been detected. A key tool for management is prevention through

border security practices and quarantine. Because of the uncertainty of establishment and because

its success is correlated with propagule pressure, prevention may be one of the most e�ective

management approaches. This is particularly the case for species that are considered a high risk

for a country. For example, the Asian gypsy moth is a potential threat to New Zealand, and

imported shipping containers and imported cars from high risk regions like Japan and Far East

Russia are checked for signs of the moth (MAF 2001b, Ross 2004).

Sometimes a species does establish, and may also be fortuitously detected early. Maybe because
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of a long lag period allowing detection before it undergoes rapid population growth and subsequent

spread, or it might be detected by an existing monitoring program for another species, or simply

through luck. Eradication is often feasible if an invasive species is detected early and especially

if the public are informed of high risk species. For example, an early gypsy moth detection in

Hamilton, New Zealand, was eradicated using aerial spraying of Btk (Ross 2004). Informing the

Hamilton public to report any sightings of the moth to the Ministry of Agriculture and Fisheries

facilitated rapid eradication.

During the rapid population growth and spread of the expansion phase, authorities may not

have the option of eradication and are limited to trying to control and contain the spread of the

species. This approach was taken by Slow The Spread project, which used strategic eradication of

sub-populations to slow the progression of the European gypsy moth across North-Eastern United

States of America (Sharov et al. 2002). Decisions about the management of gypsy moth in North

America have been well supported by predictive models (Gage et al. 1990, R�egni�ere & Nealis 2002).

1.5 Modelling invasive spread

Once an exotic species establishes a viable population in a new region, the next stage of the

invasion process is its spread across the landscape (Hastings 1996a). A model that can predict

the rate of spread and its direction, and that can be used to optimise the spatial arrangement

and frequency of sampling strategies and eradication treatments, would greatly assist government

agencies and environmental authorities to design e�ective monitoring and control measures. How-

ever, predicting spread is not an easy task for two reasons. First, data for model parameterisation

are usually not available to estimate the rate of spread of a newly detected species, so modeling

e�orts will often rely on data either from related species, or the same species previously established

in another location. Second, many species spread via multiple methods, for example through nat-

ural means (a di�usion like process) and large jumps because of human-mediated dispersal (e.g

strati�ed di�usion) (Hengeveld 1989) or rare events such as the potentially extreme distances of

wind-borne propagules. Management strategies need to account for such variation in the temporal

and spatial aspects of dispersal while the best strategy for slowing or stopping an invaders spread

is evaluated. For example, Moody & Mack (1988) have shown that preventing the establishment of

new foci for spread can be more e�ective than attempting to slow spread from existing established

populations.

A successful research model for invasive species spread that utilises a realistic landscape could

be integrated into frameworks and decision support systems and guide various strategic manage-
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ment approaches. As an example, the ‘Slow The Spread’ programme has helped the control and

supression of Gypsy moth by determining the appropriate size of barrier zones for treatment and

monitoring (Sharov et al. 2002).

Interestingly, the total area that is searched for a species’ presence can be a much greater

factor in cost of control than controlling the density of the species (Susan Timmins, pers. comm.).

Clearly models that predict potential distributions and the ecological niches of species can indicate

which areas are suitable for that species, hence decreasing the total search area necessary. Spread

models incorporate temporal change in a population distribution in addition to information about

potential distributions, such that potentially only those regions within communicable distance

require monitoring. Furthermore, the cost of eradication is generally recognized as being much

greater than the cost of surveillance and containment of an invasive species (Mack et al. 2000).

Thus proactive monitoring with appropriate bu�er zones based on spread predictions could be

more cost-e�ective than a reactionary approach to high-risk species.

Despite the usefulness of heterogeneous spread models, more general models or indicators of

population viability on a landscape are often put forward as having more reliable results (Doak &

Mills 1994). Examples are the ecologically scaled landscape indices of Vos et al. (2001) which may

be useful for making management decisions. However, these don’t address the rate of spread or

the speed at which an invasion will occur. This rate is important because any delay in responding

to an invasive species may make it impossible to control or eradicate it.

Mooij & DeAngelis (2003) outline how recent progress in model development and theory has

shown promise resulting in better parameter estimation for spatially explicit population models.

For example, mark-recapture methods have been extended to determine dispersal parameters (e.g.

Hanski et al. 2000), and approaches for extracting information from population patterns in space

have been developed (e.g. Grimm et al. 1996). Furthermore, Mooij & DeAngelis (1999) and South

(1999) showed that error propagation in spatially explicit population models need not be as great

as has been previously reported (Ruckelshaus et al. 1997) so there should be some optimism about

developing such models. Data however is always a limiting factor in modelling but attempts to

develop spatially-explicit spread models, as in all models, should clarify exactly what type of data

is necessary.

Kean et al. (2007) indicated the bene�ts of being able to model the spread of invasive species.

Kean et al. (2007) state that the �rst bene�t is that the invasive species and their control e�orts can

be prioritised. Also decision making becomes more transparent as maps make expected outcomes

explicit so that the estimation and communication of the di�erence made by applying control

treatments can be visualised and to some extent quanti�ed. Both control e�cacy and surveillance
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of targeted at-risk areas can be optimised and spread models can help identify research needs, for

example what sort of data needs to be collected.

1.6 Heterogeneity

Many models of organism spread have been demonstrated (e.g. Taylor 1980, Banks et al. 1988,

Lewis & Kareiva 1993) over several decades, although these usually assume homogeneous envi-

ronments that limit their accuracy and practicality for invasion research and management. Most

methods for predicting spread have focussed on abstract environments, sometimes constrained to

one dimension (e.g. Kot et al. 1996). Such lack of realism makes it di�cult for researchers to

make realistic predications or environmental managers to make decisions regarding species spread.

Even the wrong spatial dimension of a model may even impact the model’s results. For example,

a patchy invasion of a predator or infectious disease can succeed in a model with two-dimensions,

whereas the corresponding one-dimensional system (like many analytical models) would result in

the species’ extinction (Petrovskii et al. 2005). Also of importance, is that abstract models usu-

ally exclude the spatial patterning that arises from a population’s interaction with the landscape.

Turner et al. (1993) argue that spatial heterogeneity is an essential component for predictive

models on natural landscapes.

1.7 Objectives

The overall aim of this thesis was to develop and evaluate a exible research framework that could

address the need to incorporate realistic landscapes into spread models for modelling dispersal

processes within a GIS (this framework is hereafter called Modular Dispersal in GIS1 or MDiG).

The GIS provides the model with a heterogeneous landscape including data on geography, cli-

mate, and land cover such that the interaction and behaviour of features taken from traditional

population and spread models can be investigated.

The speci�c aims of the thesis were:

� To develop a spread model integrated within a GIS to give a more detailed and accurate

prediction of the process of invasive species spread than models that are less spatially explicit.

� Evaluate the performance of that model over the heterogeneous landscape to increase knowl-

edge on the factors that inuence spread rates.

1http://fruitionnz.com/mdig
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The speci�c objectives of this thesis were:

1. Determine an appropriate modelling system to simulate dispersal behaviour over a realistic

landscape and integrate this within a GIS.

2. Evaluate how model behaviour di�ers from that of traditional analytical and continuous

spread models.

3. Develop methods to determine appropriate model parameters and evaluate model perfor-

mance in relation to observed occurence data for a selected species.

4. Determine the extent to which stochastic models can be used to evaluate risk and predict

spread rate and direction for an invading species.

1.8 Thesis structure

Chapter 2 provides an overview of dispersal modelling. Common types of dispersal pattern and

the e�ect of spatial factors on spread are discussed. Existing modelling techniques that can be

used to predict the movements of populations or individuals are compared.

Model development and its architecture are covered in Chapter 3. The model was designed in

a modular manner, and each module is individually described here.

The dynamics of two spread modules within the model framework are studied in Chapter 4.

Dynamics are compared to analytical dispersal model dynamics.

Chapter 5 presents a case study where the spread model is used to recreate the invasion history

of Argentine ant in New Zealand. Temporal distribution data and reports from the literature were

used to calibrate the model.

The overall discussion in Chapter 6 summarises the �ndings of this thesis and discusses how

these �ndings address the original objectives. The future of heterogeneous spread modelling is

also considered.
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Chapter 2

Dispersal Models

The whole structure of science gradually grows, but only as it is built upon a �rm

foundation of past research.

{ Owen Chamberlain

A model is a simpli�cation of reality that represents a phenomenon through concepts and

processes, often with a speci�c goal in mind. This goal may be to forecast or predict the behaviour

of a system, or, if the underlying concepts and processes are not known or well understood, then

the purpose of the model may be to gain insight into the behaviour of a process.

Models may be predominantly conceptual in nature where the model ontology is explained

in ordinary language, an example of which is the Myers-Briggs personality type (Myers 1980).

Alternatively, models can use mathematical and numerical methods for their interpretation and

validation. We are interested in the use of these latter models and any further discussion on models

refers to mathematical models.

Traditionally purely mathematical models have been the formal method of modelling, using

analytical solutions that allow prediction of a system’s behaviour from a set of parameters and

initial conditions. Computer simulations are more commonly being used to supplement mathe-

matical models for which closed-form analytic solutions are not possible or are overly di�cult to

obtain.

2.1 Simulation

Simulations aim to imitate the operations of various real world processes (Steyaert 1993) rather

than solving sets of equations describing a system. A simulation attempts to represent certain
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features of physical or abstract systems through the dynamics of another simpler system. They

can be modi�ed and record their results to provide potential insights into how the original system

being simulated behaves. Simulations are run in silico and are commonly orders of magnitude

temporally faster than the real system, allowing them to be used for prediction and for observing

system dynamics at time scales beyond the ranges normally available to human observers.

Simulation models can be deterministic or stochastic. Deterministic simulation models give a

�xed output for a given set of input data and model parameters, whereas stochastic simulation

models have at least one stochastic process and consequently the model output is also stochastic

(Law & Kelton 1982).

Maynard-Smith (1974) surmised that \for the discovery of general ideas in ecology, di�erent

kinds of mathematical descriptions, which may be called models, are called for. Whereas a good

simulation should include as much detail as possible, a good model should include as little as

possible." However, simulations are now also used for the discovery of general ideas in ecology in

conjunction with mathematical models.

2.2 Explicit spatial-temporal modelling

Space and time have always been recognised as crucial components when describing ecological

change (Colasanti & Grime 1993) and spatially explicit models are \expected to increase our ability

to accurately model populations subject to complex processes" (Balzter et al. 1998). Converting

non-spatial models that can be solved analytically to models that include spatial dimensions

sometimes results in equations that are intractable to solve and thus have to be simulated instead.

Invading populations are often far from their potential distribution and as such, the way the

population changes will be dependent on the structure of suitable habitat which can be explicitly

provided in a spatial model. Dispersal is inherently spatial and temporal as it describes the

movement of individuals through space and time, as such, explicit spatial and temporal models

are useful for modelling the process.

Since spatially explicit models utilise information on landscape details they su�er less from un-

certainty than simpler models (for a comparison of event-based, temporally explicit, and spatially

and temporally explicit models see Mooij & DeAngelis 2003). Additionally, the spatial dimension

of a model can impact results. For example, Petrovskii et al. (2005) found that a patchy invasion

of a predator or infectious disease may persist in two-dimensional space, when the corresponding

one-dimensional system results in the species’ extinction.

Spatio-temporal models have state, rate, and driving variables (Wit 1993). State variables
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represent the state of the system. Driving variables, or forcing functions, characterise the inuence

of external factors and are not inuenced by the processes within the system. Finally, rate variables

are the rate at which state variables change and are inuenced by both state and driving variables.

Formally, for a general temporally discrete model:

X(t + 1) = F (X(t); Y (t)) (2.1)

where X(t) is the spatial pattern at time t, and Y (t) is a set of variables that may a�ect the

transition function, F . As an example, consider a population model. The population number

would be the state variable, the maximum population capacity that the environment will support

would be a driving variable, and the intrinsic rate of growth (per capita increase in population

when there are no limiting factors) would be a rate variable.

Impact of spatial characteristics on chaotic dynamics

A chaotic system is one whose states diverge quickly if there are any small di�erences in initial

conditions. Even though chaotic systems are deterministic, such behaviour has similarity to the

highly stochastic nature of invasions and spread: If a population establishes itself in one area, then

it becomes easier for a species to spread to neighbouring regions and these changes compound over

time, making it possible for di�erent invasion trajectories to diverge greatly.

Chaos can occur in non-linear systems and is thought to occur in population dynamics. In the

past some have argued that chaos is maladaptive because strong population uctuations increase

a population’s chance of extinction (Berryman & Millstein 1989). The inclusion of spatial compo-

nents into a model can lead to more complex behaviour that may exhibit chaotic and non-linear

dynamics (Silvertown et al. 1992). Conversely, introducing a spatial component to models, has

been demonstrated to also have a stabilising e�ect (e.g. Travis 2003, Jaggi & Joshi 2001), and at

wider spatial scales chaos has been shown to enhance meta-population persistance (Bascompte &

Sol�e 1995).

An important facet of chaos is how minor di�erences in initial conditions diverge exponentially

with time. Thus the probability of local extinction increases, but the fast desychronising rate

of chaos leads to short spatial correllation lengths resulting in global stability (Rasmussen &

Bohr 1987) termed chaotic stability or homeochaos (Ikegami & Kaneko 1992). An example of

chaotic stability are the Turing structures predicted by Alan Turing’s seminal paper (Turing 1952)

that showed how coupling the processes of reaction and di�usion can induce the formation of stable

spatial patterns despite the underlying reagents being in constant ux. Thus the inclusion of space
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in potentially chaotic systems can both stabilise and promote chaotic behaviour in population

dynamics depending on the speci�cs of the system.

2.2.1 Heterogeneity and Homogeneity

Mathematical models describing dispersal often assume a homogeneous environment because of the

di�culty of �nding analytical solutions if it were otherwise. This led to the majority of research on

dispersal, previous to this decade, ignoring heterogeneous environments. Perhaps not surprisingly,

this is the same period when Geographic Information Systems (GIS) became generally accessible

to scientists, both in terms of the software for creating models and the hardware required to run

models in heterogeneous environments.

There are substantial bene�ts for using heterogeneous environments in dispersal models. Gard-

ner & Gustafson’s (2004) J-walk model, when applied to a heterogeneous environment, showed

that model parameters were less sensitive to change than simpler dispersal models that assumed a

homogeneous environment. The sensitivity that parameters often show in homogeneous environ-

ment models are bu�ered by irregular landscapes (Mooij & DeAngelis 2003).

As an example of the impact that heterogeneous landscape can have on dispersal, Schr�opfer &

Engstfeld (1983) found inhospitable mountain ranges formed regional barriers against the spread

of the Muskrat (Ondatra zibethicus) in Germany. Conversely, an abundance of the Muskrat’s

preferred wet marsh habitat slows expansion too, since such areas can support large populations

and therefore there is less drive for individuals to leave in search for more resources.

2.2.2 Scales of time and space

Grimm et al. (1996) placed emphasis on the need to consider patterns in ecological modelling in

general, and others have called for explicit consideration of spatial and temporal scales in ecology

(Steele 1989, Weins 1989, Levin 1992). Both these factors are now seen as an important aspect of

any ecological system, and in particular more robust relationships in patterns of invasive species

spread are likely to emerge at broader spacial scales (Lonsdale 1999).

Depending on the scale at which a system is modelled, the results of some phenomena and

species’ behaviour will have greater impacts on observable dynamics than others. Such that the

model’s scale will inuence our choice of dynamics to model. The scale of a model also determines

the level of abstraction necessary, since complex mechanisms can produce simple structure at a

larger scale.

It is important to consider patterns in nature while creating ecological models, as it makes them
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less arbitrary, and relates them to explicit spatial scales (Grimm et al. 1996). Pattern orientated

modelling (Grimm 1994) also assists in ‘scaling up’ from population ecology to community and

ecosystem ecology (Grimm et al. 1996).

Often stated objectives for models are either prediction or understanding. However prediction

without understanding represents faith in the power of heuristics and algorithms, and understand-

ing without the ability to predict is illusion (Grimm et al. 1996). An alternative is that a model

can be classi�ed according to the point at which it departs from reality and how features are se-

lected and aggregated to represent reality. At one extreme there are complex models that include

as much detail about a system as possible. There are many arguments against the usefulness of

such models. Studies by Mollison (1986), Star�eld & Bleloch (1986), Wissel (1989), and Wissel

(1992) all conclude that complex models are unsuitable for the development of understanding and

prediction. Often the aggregation and choice of features from reality to include in the model

are subjectively selected, based on the background of the modeller which can make it di�cult to

determine the signi�cance of a model’s results unless the modellers bias is known, particularly if

the results can’t be compared to a well de�ned performance metric.

Conversely, many classical population ecology models are very simple (such as the Lotka-

Volterra model) where the desire is for generality. Levins’s (1966) formula ‘to sacri�ce detail

for generality’ suggests that detail impedes the aim of generality, but at some stage a modeller

must decide what biological aspects and thus how much detail should be included in their model.

Too much simpli�cation can lead to scale-free modelling, where extreme idealisation means the

model loses its relationship to spatial and temporal scales. Such generic simpli�ed models are also

restricted in their ability to produce veri�able predictions (Grimm 1994).

Finally, as suggested above, patterns observed in nature can be used as the basis of a model.

Where this pattern is a clearly identi�able structure in nature itself, or in data extracted from

nature. Model design through patterns is essentially tautological because science tries to get to the

bottom of patterns - \irregular change without pattern lies beyond science" (Grimm et al. 1996).

2.3 Models of Dispersal and Biological Invasion

With respect to dispersal modelling we are at a stage where we understand many of the underlying

dynamics through mathematical models applied to real dispersal data, but the inherent complexity

of real environments have made practical prediction di�cult. Analytical solutions are only avail-

able for extremely simpli�ed environments, so to develop practical predictive models simulation is

an important tool.
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Dispersal is an important aspect of population dynamics allowing individuals to locate new

habitat and resources and it is also thought to aid in the stabilisation of populations when in

heterogenuous habitats (Ruxton & Rohani 1999) or when predation causes localised extinctions

(Goodwin et al. 2005). Dispersal is clearly a major factor in invasion biology - not only does

dispersal allow exotic species to invade new regions, it also determines the speed that the initial

population distribution will spread to occupy the full extent of suitable environment available, as

determined by both abiotic and biotic factors. Furthermore, dispersal from an invader’s estab-

lishment site is an important step in the process towards naturalisation and has a major inuence

on the threat an invasive species poses to the environment. The way that a species spreads also

determines the practicality of control and eradication attempts.

The simplest method of modelling dispersal is to ignore speci�c spatial interactions by modeling

movement as either a di�usive process (e.g. Andow et al. 1990) or as simple transfer functions

(Fahrig & Merriam 1985). Such models provide a holistic view of population dynamics without

the need to consider the details of individual dispersal events such that analytical solutions can

be developed (e.g. Waser 1985). However these models are not useful when modelling fragmented

populations or when investigating the e�ect of landscape pattern on the rate and direction of

spread.

The e�ect of landscape and habitat pattern on dispersal is dependent on the species being

modelled. Gardner & Gustafson (2004) explains that simple mathematical models have often

been used for organisms, such as insects, that do not continuously interact with the landscape

while dispersing. Whereas a raster or grid-based approach is more appropriate to simulate species

that move shorter distances per unit time and interact more strongly with landscape features (e.g.

vertebrates and small mammals). However, all organisms eventually interact with the landscape,

even if only at the end point where the habitat will determine whether the organism will establish

itself.

Both Ruxton & Saravia (1998) and Itami (1994) argue that more biological realism and more

deterministic ideas are needed in modelling real world phenomena. However invasion and the

process of dispersal are both strongly based on chance occurrences, such as rare long distance

dispersal events that have disproportionate impacts on spread rates (Clark et al. 1998). Thus

a probabilistic or stochastic method is likely to be more appropriate for studying the spread of

invasive species.
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2.3.1 Spatial dynamics of biological invasions

There are two components to the spread of a population. The spatial transmission of propagules

and the growth of local populations. Both dynamics can have a signi�cant impact on the rate at

which a population spreads (Clark et al. 2001).

Pielou (1979) identi�ed three kinds of dispersal: di�usion, jump-dispersal, and secular migra-

tion.

Di�usion

Di�usion is the population spread that results from the average movement of indviduals as the

population grows and seeks new habitat and resources. Di�usion occurs gradually and across

generally hospitable terrain. More speci�cally it refers to the spread that occurs from individ-

ual movement based on random-walks, which gives rise to an expanding Gaussian distribution

reecting population density (Dobzhansky & Wright 1943).

Jump dispersal

Jump dispersal is where propagules travel long distances over what is often inhospitable habitat.

Often these events are rare, but still have a large impact on population spread.

Jump dispersal facilitates the spread of invasive species, as these usually radiate from multiple

disjunct foci which originate from independent introductions from the species’ home-range, or

by dispersal with repeated establishment of the alien species from a founder population, or both

(Baker 1986).

Jump dispersal is often attributed to volant (winged) organisms (Johnson 1957), but many

other species also have some form of jump dispersal, particularly if they associate closely with

human activity. In such cases, human-mediated dispersal may occur where humans inadvertantly

transfer propagules of a species from one location to another. Often this human transfer is at a

distance much further than possible through the species own dispersal mechanisms.

The spread of Oaks through Europe at the end of the Pleistocene epoch (Skellam 1951) was

much quicker than possible through an expected seed shadow, as most acorns fall close to the

parent, and has been termed Reid’s paradox (Clark et al. 1998). Long distance dispersal, possibly

by jays moving acorns up to several kilometers (Johnson & III. 1989), may account for some of

this.

The frequency and distance of jump-dispersal events are stochastic, di�cult to determine, and

therefore have rarely been quanti�ed (Higgins & Richardson 1999, Hengeveld 1994) but Veit &
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Lewis (1996) and Suarez et al. (2001) make attempts at quantifying them for the House Finch and

Argentine ant respectively. Estimates of the rate and distance of long distance dispersal events are

however essential for accurate model construction, a limitation that is widely recognised (Shigesada

& Kawasaki 1997).

Another example of an attempt at the quanti�cation of jump-dispersal events has been made

for zebra mussels (Dreissena polymorpha). The potential for over-ground dispersal between wa-

tersheds was examined by surveying rates and distances at which recreational boaters travel in

Wisconsin (Buchan & Padilla 1999). Approaches such as these o�er great promise in the quan-

ti�cation of jump-dispersal events.

Clearly, long distance dispersal is extremely inuential for determining spread rate and popu-

lation spread.

Secular migration

This type of dispersal is similar to di�usion, except that it takes place slow enough that appreciable

evolutionary change occurs during the process. Both the environment and natural selection act

on the population as the species range shifts over long time intervals. This slow movement of

a population may reect the ongoing dynamic between interacting species, the change of abiotic

factors that can a�ect a spreading species such as climate, and the adaptation of a species to new

environments.

2.3.2 Strati�ed dispersal

Di�usion results in short distance migration that generally has a closed front or continuous spread.

Long distance dispersal however progresses more patchily and with broken fronts (Mollison 1977).

Both these types of dispersal often occur together and when they do it is called strati�ed dispersal

(Hengeveld 1989). Cli� et al. (1981) also distinguished between neighbourhood di�usion and

long distance dispersal, but instead used the term \hierarchical di�usion" to describe the joint

dispersal pattern. Strati�ed dispersal includes three things: the establishment of colonies ahead

of the advancing population front, population growth in these individual colonies, and colony

coalescence that contributes to the advancement of the population front (Figure 2.1).

While the di�usive aspect of strati�ed dispersal occurs via a species’ own mode of movement,

long distance dispersal can occur both through human-mediated dispersal and the species own

locomotion, possibly with the assistance of wind or transport down rivers. One potential factor

behind di�ering dispersal distances could be di�erent dispersal morphs, such as di�erent seed size
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Figure 2.1: The result of strati�ed dispersal, with the population advancing left to right. The
infested zone shows where colonies have coalesced, the transition zone is where isolated colonies
establish and grow due to propagules from the infested zone, and the uninfested zone is where the
species is generally absent.

in plants (Rose 1978, Southwood 1962) and wing length morphs in insects (Harrison 1980).

2.4 E�ect of population growth on species spread

Population increase in a given area can occur either through individuals reproducing or through

immigration from external sources, the former being reproductive growth and the latter called

linear growth (Zadoks & Schein 1979).

Invasion speed is highly correlated with population growth rate and the rate of spread cannot

be predicted from the distribution of dispersal distances alone, as Neubert & Caswell (2000)

demonstrate with models for the plant teasel (Dipsacus sylvestris) which invades �elds in North-

Eastern United States. Similarly, Veit & Lewis (1996) found that the spread of House �nches

(Carpodacus mexicanus) throughout eastern United States, following their release from Long island

in 1940, was strongly correllated with the rate of population growth near the center of their range.

Allee e�ects on a population can also slow the spread rate of an invasion because small popu-

lations at the invasion front are unable to increase in density without �rst obtaining support from

the bulk of the population (Lewis 1997, Veit & Lewis 1996). Allee e�ects also obviously impact
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on the rate of establishment (Drake & Lodge 2006).

2.5 Applicable Fields

In mathematics and physics, di�usion speci�cally concerns change in the density of something due

to uncontrolled movement such as Brownian motion. Brownian motion is random movement of a

particle or individual, and results in a Gaussian distribution for the entire population if individuals

or particles are all released from a central point. Di�usion is often equated with dispersal (Pielou

1969, Pielou 1977, Pielou 1979) particularly in the humanities, such as in economics (Brown 1981)

but also in sciences such as human epidemiology (Cli� et al. 1981).

Di�usion is often described by the power law,

msd(t) � 6Dt� (2.2)

where D is the di�usion coe�cient and t is the elapsed time. Typically, in a di�usive process,

the mean squared displacement (msd) of a particle is a linear function of time (� = 1). The

term anomalous di�usion is used to describe a di�usive process with a non-linear dependence on

time. More speci�cally, if � > 1, the phenomenon is called super-di�usion. In cellular biology,

super-di�usion can be the result of active cellular transport processes (Caspi et al. 2002). If

� < 1, dispersing particles undergo sub-di�usion. Sub-di�usion has been proposed as a measure

of macromolecular crowding in the cytoplasm (Weiss et al. 2004).

One subject in which spread models have become particularly advanced is in the prediction of

wild �re behaviour. The models take into account wind direction, underlying vegetation, and even

include long distance dispersal events similar to those which are so inuential in invasive species

spread. In wild �re spread, these long distance dispersal events are referred to as "spotting"

(Xu 1994).

Spread models are also important in epidemiology - the study of heath and illness of pop-

ulations. For example, SARS or Severe Acute Respiratory Syndrome spreads by common local

transmission but also air passenger travel which results in occasional large distance transmission

similar to the jump dispersal phenomenon mentioned earlier (Bell 2003).

These varying subjects approach spread of objects or organisms in di�erent ways but also

demonstrate dispersal processes occurring at distinctly di�erent scales, such as local growth cou-

pled with di�usion and a stochastic long distance dispersal process.
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2.6 Partial Di�erential Equations

Partial di�erential equations (PDEs) describe a relation involving an unknown function of several

independent variables and its partial derivatives with respect to those variables. They are often

used to describe spatial processes and to model physical systems because they can represent the

change of variables, such as population density through space and time, to the current value of

the variables.

Early mathematical theory on epidemics, random migration, and distribution, was developed

by Brownlee (1911). PDE descriptions of reaction-di�usion systems appeared �rst in population

genetics (Fisher 1937, Kolmogorov et al. 1937, Dobzhansky & Wright 1943) before being applied

to the spread of invasive populations by Skellam (1951) and Kierstead & Slobodkin (1953).

Skellam (1951) used simple reaction-di�usion equations to describe the spread of muskrats

(Ondatra zibethicus) in central Europe and these models are still the most commonly used for

invasive spread (Andow et al. 1990, Higgins & Richardson 1996, With 2002). Reaction-di�usion

equations are based on partial di�erential equations (PDEs) of the general form:

�N

�t
= rN + D

�

�2N

�x2
+

�2N

�y2

�

(2.3)

where N(x; y; t) is the population density at time t at point x; y on the landscape, r is the per

capita growth rate, and D is the di�usion coe�cient which indicates the rate of random movement

across the landscape.

The philosophy behind using PDEs is that patterns at a population level do not depend on the

individual behaviours of organisms and can be deduced by the statistical properties of a population

of individuals. This is similar to the assumptions underlying the theory of molecular di�usion and

heatow allowing PDEs to be used in modelling physical systems. An objection could be that

organisms do not follow the assumptions of independent and random movement (Holmes 1993),

but Andow et al. (1990) show that simple reaction-di�usion models can still explain population-

level patterns even when neglecting individual behaviour and thus such detail may not always be

neccessary.

The ability of simple models to explain population-level patterns is important for successful

modelling. Despite that telemetry of mobile organisms often successfully describes movement and

migration patterns for a variety of species (Gautestad & Mysterud 1993, Walsh et al. 2006), this

technology is impractical for smaller propagules, such as insects or plant seeds.

Mathematical analysis of the di�usion equation (Equation 2.3) indicates the velocity of the

population front, V , reaches an asymptote (Okubo 1980, Okubo & Levin 2001):
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Vt!1 = 2
p

��D (2.4)

A constant velocity for population fronts has been found to apply to experimental data on

the spread of many invading organisms (Hengeveld 1989, Shigesada & Kawasaki 1997). Andow

et al. (1990) used a simple reaction-di�usion model with parameters taken from seperate studies

and then compared them with actual distribution spread rates. The reaction-di�usion equation

can give relatively good approximations for some species, such as the muskrat and small cabbage

white buttery, but not for others, such as the cereal leaf beetle (Andow et al. 1990). Species

whose spread doesn’t �t the reaction-di�usion model probably have their spread driven by several

di�erent modes of dispersal (Hengeveld 1989, Shigesada et al. 1995).

An important assumption for the reaction-di�usion equation is that the distances individuals

move during a given length of time are drawn from a normal distribution (Kot et al. 1996, Lewis

1997). Empirical data, however, often shows leptokurtic or \fat-tailed" distributions where rare

long distance dispersal events occur, in which case, an integrodi�erence equation with an appro-

priate kernel that describes the distribution of dispersal distances may be more appropriate (see

section 2.7.1 below).

PDEs are generally more di�cult to solve analytically than ordinary di�erential equations,

which is why they often only consider simpli�ed model scenarios that make assumptions such as

a homogeneous environment and/or con�ne themselves to one dimensional scenarios.

2.7 Integrodi�erence equations

Integerodi�erence equation models (IDEs, also referred to in the literature as integro-di�erential

equations, and integral kernel-based models), unlike reaction-di�usion PDEs which assume repro-

duction and dispersal occur simultaneously, break dispersal and population dynamics into separate

stages. They comprise a di�erence equation describing population growth at each point in the

landscape and an integral operator that accounts for the dispersal of organisms in space (Neubert

et al. 1995, With 2002). Thus IDEs are discrete in time, while still treating space as continuous

(Wang et al. 2002).

IDEs have the general form:

Nt+1(x) =

Z +1

�1

k(x; y)f [Nt(y)]dy (2.5)

where Nt+1(x) is the population density at point x and time t + 1. This is calculated as the
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integral of the new population at each point, f [Nt(y)] (thus f represents a population growth

function), and the number of individuals immigrating to point x from point y as determined by

the integral operator k, also known as the dispersal kernel.

2.7.1 Dispersal kernels

The dispersal kernel in an IDE determines the probability that a dispersing propagule will travel

a given distance and is equivalent to the \dispersion probability �eld" described by Hengeveld

(1989).

A dispersal kernel that has the shape of a Gaussian probability distribution would essentially

be the same as a reaction-di�usion PDE, but these could both underestimate the spread rate

of the population. For example, the spread of Oak in Europe at the end of the Pleistocene was

much faster than predicted by traditional explanations of tree life history combined with restricted

Gaussian dispersal (Clark 1998). Instead Clark et al. (2001) used a leptokurtic dispersal kernel,

that describe more short and long distance dispersers than a Gaussian kernel that has a comparable

mean and variance. Leptokurtic dispersal kernels result in greater spread rate, and can be used

to make a greater distinction between the relative number of long versus short distance dispersal

events.

Other probability distributions that are often used as dispersal kernels include the exponential

distribution and inverse-power functions (Okubo & Levin 2001). Weinberger (1982) showed that if

a dispersal kernel is exponentially bounded (i.e. the kernel’s tail reaches zero at least as fast as an

exponential distribution) then the spread rate reaches a constant and the population front forms a

travelling wave (Kot et al. 1996, Neubert et al. 1995), in a similar way to reaction-di�usion systems

using Gaussian spread. Such studies show that the shape of the dispersal kernel, especially the

tail of it’s distribution, is extremely important to spread rate. Those dispersal kernels that are not

exponentially bounded are called \fat-tailed", Kot et al. (1996) used an IDE to approximate the

rate of spread when such a dispersal kernel is used and found that the rate was strongly sensitive

to the shape of the kernel’s tail. Particularly when the kernel’s moments are �nite, although in

all cases the population distribution had an accelerating rate of spread. Moreover, Clark, Fastie,

Hurtt, Jackson, Johnson, King & Lewis (1998) demonstrated that sensitivity of population spread

rate to reproductive rate is increased the fatter the dispersal kernel’s tail.

IDE models have also shown that the long-distance component of dispersal ultimately decides

invasion speed when supported by adequate population growth, even when long-distance dispersal

is rare (Kot et al. 1996, Lewis 1997, Neubert & Caswell 2000).
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IDEs are similar to modelling framework used in this study as they both separate the spread

of a population into discrete time steps. Additionally, one of the major modules in the framework,

the kernel module (Chapter 3.3.2) has its conception in the idea IDE dispersal kernels.

2.8 Cellular Automata and Coupled Map Lattice models

Cellular automata (CA) and coupled map lattice models are both examples of spatially explicit

population models (SEPMs). SEPMs are population-based or individual-based models of local

dynamics and dispersal behaviour that often use a GIS-based description of the habitat (Turner

et al. 1995) and simulate the movement of populations or individuals, thus they are distinct from

PDEs and IDEs. A lattice of cells is often used to represent the population distribution, with a

set of layers describing habitat and life stages with relationships between layers represented by

di�erence equations (Dunning et al. 1995). Note that when partial di�erential equations are solved

numerically then they could be considered similar to SEPMs in the way the use a lattice of cells

to describe the population distribution.

SEPMs have been shown to be promising tools for managers to predict population responses

to global change as they can easily incorporate landscape complexity (Dunning et al. 1995). Also,

the numerical capabilities of modern computers allow cellular automata to be used for the analysis

and simulation of spatially heterogenous ecological systems (Plotnick & Gardner 1993). Remote

sensing and Geographic Information Systems (Section 3.1) have also driven the development of

SEPMs by making large arrays of spatial data available as raster grids.

A CA functions by giving each cell in the lattice a particular state. The state of each cell

is then updated to a new value by a function that takes the cell’s current state and the states

of cells in the neighbourhood of the cell being processed. As CA are based on a lattice of cells,

and because all cells are processed in one step before updating them to their new state, CA are

spatially and temporally discrete. The states that a cell may adopt are also traditionally discrete,

such as the presence, absence, or type of species that occupies a cell, but continuously valued CA

also exist, which allow for the cell’s state to be a continuous variable.

CA exhibit an array of emergent behaviour unattainable by other models and easily allow for

stochasticity. However robust analysis can be more di�cult than for di�usion and integrodi�erence

models. Durrett & Levin (1994b), Durrett & Levin (1994a), Levin & Durrett (1997), and Chave

et al. (2002) present general guides for the use of CA in ecology and various areas of ecology have

bene�tted from their use, as detailed in Table 2.1.

One example of the use of CA in modelling biological spread is in modelling waves of rabies
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Table 2.1: Cellular Automata have been used to model many processes in biology and ecology.
Several study areas and related references are shown.

Study area References
Cell colony growth Eden (1961), Richardson (1973)
Plant populations with multiple
modes of reproduction

Harada & Iwasa (1994), Harada et al. (1995)

Forest gap expansion Kubo et al. (1996), Satake et al. (2004)
Competition Caswell & Cohen (1991), Caswell & Etter

(1992), Etter & Caswell (1994), Tilman et al.
(1997), Durrett & Levin (1998), Buttel et al.
(2002), Cannas et al. (2003)

Predation Haswell et al. (1991)
Epidemics Mollison & Kuulasmaa (1985), Tainaka

(1988),Sato et al. (1994),Filipe & Maule
(2004)

Game-theory interactions Nowak et al. (1995), Nakamaru et al. (1996),
Nakamaru & Levin (2004)

infection in foxes Vulpes vulpes (Grimm et al. 1996). In collection data, the spread of rabies shows

3 to 5 year intervals between waves of infection. After the �rst wave, where 60 to 80% of the

population fall victim, further less pronounced waves occur with a 3 to 5 year period (Anderson

et al. 1981, Bacon 1985, Murray et al. 1986). The driving factor behind these waves is the local

temporal oscillations in fox density, and CA models were able to e�ectively model these oscillations

and the emergent infection waves.

Although CA may be ideal for modelling the spread of a populations or indviduals over a

heterogeneous environment, many CA studies do not explicitly address the speed of invasion or

spread rate. Exceptions are studies by Kawasaki et al. (2006), who investigates the e�ect of

colonisation stochasticity on the speed of invasion, and Ellner et al. (1998), who uses the pair-edge

approximation for measuring population spread. This approximation technique uses the distance

of the furthest forward individuals and approximates the distance travelled by using a random

walk.

The inclusion of transition probabilties for change between cell states allows CA to model

stochastic processes. Kawasaki et al. (2006) used such a probabilistic CA to demonstrate that

the spread rate of an advancing population front is increased by stochasticity. This contrasts

with the decrease in spread rate seen by adding stochasticity to one dimensional integro-di�erence

equations (Lewis 2000, Lewis & Pacala 2000, Clark et al. 2001, Snyder 2003).

Itami (1994) argues for use of deterministic models in spatial dynamic simulations using Cel-

lular Automata within GIS. However, because dispersal is stochastic and invasion wavefronts are
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almost certainly irregular, Kawasaki et al. (2006) suggest that stochastic CA models may be use-

ful for capturing basic aspects of invasion that are di�cult to explain using their deterministic or

one-dimensional counterparts, such as long distance dispersal and variable habitat suitability, as

indeed has been found in this study.

CA and coupled map lattice models are very similar to the modelling framework used in this

study. Although this is perhaps not surprising given how general these models are. CA de�ne

state transitions based on rules, and these rules can be thought of as analogous to operations that

individual modules in the framework perform.

2.9 Metapopulation models

A metapopulation is described by Grimm et al. (1996) as consisting of a number of sub-populations

that live in spatially isolated islands of habitat (‘patches’). The sub-populations are generally small

and potentially threatened with extinction. However, the metapopulation as a whole can survive

if local extinctions are cancelled out through recolonization from the remaining sub-populations.

Initially the concept of a metapopulation originates from Levins (1969), although Levins (1969)

dealt with metapopulations in a scale-free manner, and ignored dispersal range. For a spatially

structured population to be considered and represented as a metapopulation Hanski & Kuusaari

(1995) suggest that it should meet several conditions:

� the focal species lives in spatially distinct habitat patches.

� there is no ‘mainland’ population, and thus all local populations have a signi�cant risk of

extinction.

� dispersal is distance-dependent and also limited by distance, which means that the spatial

structure of the habitat has signi�cant consequences for dynamics.

� the dynamics of local populations are not completely synchronous.

Metapopulation models have been used to describe mainly populations that are spread across

habitats structured as remnant fragments (for a review see Hanski 1999) with relatively little

work done on how spatial processes could a�ect a single population on contiguous suitable habitat

(Travis 2003). Although it may be that the question of metapopulations on contiguous suitable

habitat can be investigated using other modelling techniques such as Individual Based Models

(see Section 2.11, and Law & Dieckmann 2000, Law et al. 2003) and applied geometry (Bolker et

al. 2000).
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Metapopulation models are used frequently and became known notably for their use for study-

ing buttery populations since butteries have well recorded historical data for roost sites that

are often geographically patchy. Hill et al. (1996) studied the species Hesperia comma and Hanski

et al. (2000) modelled the migration of Melitaea diamina between habitat patches. The migration

between patches not only assists survival of the entire population through re-colonisation of extinct

patches, but is also important for geneow. Migration can impact both the dynamics of local pop-

ulations (Kuussaari et al. 1998), and entire metapopulations (Gyllenberg & Hanski 1992, Hanski et

al. 1995). As with other paradigms for modelling dispersal, the distance travelled by propagules is

very important. Hill et al. (1996) showed when predicting occupied patches in a metapopulation of

the Hesperia comma that an exponential probability distribution representing dispersal distances

can underestimate long-distance dispersal.

One bene�t of a metapopulation model is that such model’s are often based on a discrete

network of patches. Limited habitat structured as distinct remnant fragments make the study area

easier to de�ne and data collection simpler. Fortunately, populations of some species naturally �t

this model, or are forced into it due to patchy habitat and resources (Hanski & Kuusaari 1995).

Metapopulation models, as they don’t use contiguous regions of variable habitat but distinct

patches of disconnected suitable habitat, are probably the most distinct of the dispersal models

from the modelling framework used in this study. Consideration of modelling metapopulations is

further discussed in Appendix B.

2.9.1 Stochastic patch occupancy models

A sub-category of metapopulation model are the stochastic patch occupancy models or SPOMs

(Moilanen 2004). As the name suggests, these models simply consider only the presence or absence

of a population within a habitat patch, with the population size either ignored or inferred by the the

size of the habitat patch. If SPOMs use discrete time then they are analogous to, and sometimes

called, state transition models.

In SPOMs, the concept of the dispersal parameter represents the chance an individual will

travel from one patch to another whereas connectivity determines the overall chance of individuals

arriving from all other patches in the metapopulation network and is used to determine the chance

of colonisation. The chance of extinction is greater for smaller patches but also countered by a

rescue e�ect from connectivity (Moilanen 2004). SPOMs are often used for investigating the e�ect

of habitat loss on species survival (Moilanen 2004) as well as the e�ect of regional stochasticity in

environmental suitability on the same (Moilanen et al. 1998, Moilanen & Cabeza 2002).
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2.10 Percolation models

In the mathematical literature Broadbent & Hammersley (1957) introduced the concept of per-

colation: a model of how uid particles travel through a random medium. The medium in which

the uid particles are in, and interacts with, dictates the path of the particles.

Percolation theory is often concerned with the connectivity that exists in stochastic structures.

Bond percolation employs bonds between sites that have probability p of being open, and proba-

bility (1 � p) of being closed (Smythe & Wierman 1978). A network of sites created using bond

percolation has the term cluster to describe a set of inter-connected sites, and a change of p past

a threshold value (called the percolation threshold) will create a sudden increase in cluster size

(With 1997). Site percolation is similar to bond percolation, but the sites are classi�ed as open

or closed instead of the connections between them.

If a percolation model was to be applied to an ecological situation, such as the connectivity

of the landscape, then the potential disruption in the size of the number of connected sites is

predicted to occur abruptly, at a threshold level of habitat loss and fragmentation (With 1997).

The signi�cance of such a threshold is that invasive spread may occur most rapidly and extensively

above a threshold level of disturbance, which may also vary with fragmentation and the pattern

of disturbance (Wiens et al. 1997, With 1997).

Percolation has been applied to simulating the competition between two species (Mollison 1987,

Durrett & Levin 1994b), with distinct invader and defender sites (Plotnick & Gardner 1993), and

in the creation of neutral landscape models called spatial correlation landscapes (Schumaker 1996).

Peng (2000) used a site percolation model to model the spread of weeds in New Zealand, and

used machine-learning decision trees to generate the probability values of bonds being open or

closed. These bonds indicated the relative suitability of the underlying landscape.

As percolation models can be represented as a grid, they can be emulated within the modelling

framework developed in this study as discussed within Appendix B.

2.11 Individual Based Models

Complexity is sometimes added to population models through disaggregation of a population

into age or size classes, and often this gives more realistic results than their simpler counterparts

although at the expense of generality. Continuing to re�ne the population by size or age still leads

to the violation of two aspects of biology. First, all individuals are di�erent, physiologically and

behaviourally, and second, interactions between individuals take place locally, which implies that
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the action of an individual organism is primarily a�ected by its local spatio-temporal surroundings

(c.f. Huston et al. 1988).

The classical approach to modelling population processes aggregates populations and assumes

that no signi�cant information is lost averaging individuals. Although this may be true, the

classical approach also violates the principal of locality by implicitly assuming that every member

of a population has an equal inuence on every other member of a population (Huston et al. 1988).

Individual based models (IBMs) consider the individual organism to be a logical basic unit for

modelling ecological phenomena (Judson 1994). IBMs represent individuals explicitly and examine

the dynamics of a concert of individuals, each acting on simple but biologically relevent rules.

These are two broad categories of IBMs that may be identi�ed: vector-based algorithms to

simulate movement as a correlated random walk (Kareiva 1983, Marsh & Jones 1988, Lima et

al. 1999), and grid-based representations of landscapes to simulate the interaction of dispersing

individuals on a landscape matrix (Allen et al. 1993, Gustafson & Gardner 1996, Wiegand et

al. 1999).

It is possible to translate classical population models into IBMs. As an example, Travis (2003)

reformulated the Ricker growth equation into an IBM with �nite dispersal distances and interac-

tion between individuals limited to their local neighbourhood. This IBM led to both static and

dynamic spatial patterns forming, dependent on the growth rate. Limiting the dispersal distance

and size of the interaction neighbourhood stabilised global population dynamics. In contrast to

metapopulations described earlier this method models a single population in a contiguous land-

scape, rather than multiple sub-populations across a fragmented landscape. The Ricker growth

equation has the potential to be chaotic, but arguably hasn’t been found in data collected by

experiment or in nature. Travis (2003) suggests the absence of chaotic population dynamics in

experimental data is because of the stabilising e�ect of including spatial interations.

Gardner & Gustafson (2004) created a spatially explicit model of small mammal dispersal

within a heterogenuous landscape. The model, called J-walk, considers spatial variability in prey

energy and predation risk. J-walk also allows for a spectrum of individual dispersal strategies to

be simulated, with each individual’s movement a�ected by their activity level and physiological

status.

Kot et al. (2004) analysed two theoretical models previously discussed by Snyder (2003) and

showed how branching random-walks could act as a bridge between integrodi�erence equations and

individual-based simulations. However, a branching random-walk formulation only appears appli-

cable for spatially homogenous environments, whereas IBMs and other simulation-based dispersal

models have their strength in modelling dispersal across heterogeneous landscapes.
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In the past IBMs have been constrained by a limited numbers of individuals due to insu�ucient

computational resources, but the increase in processor speed and memory capacity, in concert with

other developments such as parallel-processing and grid computing makes much larger populations

feasible to simulate.

MDiG allows individuals to be represented within a grid, if the simulation resolution is set

appropriately, such that a raster cell corresponds to the size of an individual or it’s territory.

At coarser resolutions, where multiple individuals could coexist within the area represented by a

raster cell, SEPMs are a better analogue of a simulation in MDiG.

2.12 Summary

This chapter has covered several categories of model that can be used to study dispersal. Speci�c

models however, can have peculiarities that make distinct classi�cation di�cult. Despite this, the

major features for classifying a model can be reduced to several factors. Whether the model is

spatially explicit or not, whether it represents time and space in a discrete or continuous fashion,

and how it aggregates populations (either as presence/absence, abundance , or without aggregation

in the case of IBMs), and whether the model is stochastic or not.

No class of model is better than another, but certain types of models will be appropriate

depending on the questions being investigated, and the form of the data available to support it.

2.12.1 Models used for management of invasive species

Models are frequently used to provide decision support in pest management, often to determine

the most e�cient or cost e�ective solution to eradicating or controlling an unwanted species. For

example Moody & Mack (1988) used a simple non-spatial strati�ed dispersal model to demon-

strate generally that controlling distant foci is usually more important than controlling the main

beachhead population, when attempting to limit the spread of an invasive species.

Similarly, population based models have determined the most cost e�ective method for con-

trolling invasive populations of a intertidal wetlands grass, Spartina alterniora, in Washington

(Taylor & Hastings 2004). Population numbers were important in this study becase the density

of the exotic species impacted the e�ectiveness of its control.

The early stages of an invasion is often characterised by one or a few large foci (Mack 1981,

Mooney et al. 1986) which could partly be due to larger foci being easier to detect. Since these

larger foci are the �rst detected, there often become the �rst and perhaps only target for control

(Fenn 1980). However if smaller foci equal the same amount of space as the initally detected
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large foci and all foci have the same rate of spread, those smaller foci will increase their total area

occupied much quicker than a single large focus (Mack 1985). This dynamic may account for the

acceleration in range expansion often witnessed in terrestial plant invasions (Ewel 1986, Mack 1985)

and thus highlights the importance of attempting to model spread so that attention can be focussed

on areas where small foci will potentially establish. Regimes of controlling small foci has been

modelled by Moody & Mack (1988) and been an important factor in the success of numerous

control programmes (e.g. Eplee 1981, Watson 1985).

In other situations, such as with many terrestrial weeds, the control process can involve much

the same e�ort across a range of plant densities. The main concern then becomes the total

area of the range the invasive species occupies and not density of the species within that range

(Watson 1985). The importance of area for some invasive species shifts the focus for these decision

support models to accurate prediction of the species population distribution, and it’s potential

for spread. When the distribution of a dispersing invasive species is important for its control,

spatially-explicit modelling over heterogeneous landscapes becomes unavoidable.
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Chapter 3

A modular dispersal simulation

framework

An objective of this thesis was to investigate and develop ways of modelling the spread of invasive

species over a heterogeneous environment. This chapter introduces the simulation framework for

the spread model that was designed and developed to address that objective.

The architecture of model (MDiG) is discussed along with its link to the Geographic Informa-

tion System GRASS. The individual modules are then introduced with previous related research,

and the behaviour of the module is explained. The division of dispersal and population processes

into modules allows the framework to be adapted to the speci�cs of a particular species. One strong

inuence on the design of the simulation framework was the consideration of possible improve-

ments that may extend MDiG’s capacity for dispersal research. These potential improvements

are in Appendix B but are not directly required to understand the simulation framework.

3.1 Using GIS to model dispersal

A Geographic Information System (GIS) is a set of tools designed to manage, analyse, and process

spatially referenced data that is stored digitally on computer hardware (Goodchild 1993). The

bene�ts of a GIS are many. Spatial data can comprise a range of coordinate systems and datums

(shapes representing the surface of the earth) that often make it di�cult to directly compare any

two sources of data. A GIS manages the process of conversion between projections and datums

allowing researchers to focus on the process of data analysis and exporation rather than data

conversion. Dynamically generated maps, the most common output for visualising spatial data in
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a GIS, are considered good communication tools allowing spatial concepts to be conveyed more

easily than textual or verbal descriptions (Sequeira 2002).

Another bene�t of GIS is that by connecting a GIS with Global Positioning System (GPS)

instruments - tools capable of accurately recording positions on the earth’s surface - it assists

data collection by allowing a measurement of a variable to be easily associated with a spatial

location. The combination of GIS and GPS has been used in the area of pest management for

the precise tracking of aerial spraying aircraft, and has also been used to associate precise spatial

locations with trap catches (Sequeira 2002). Such data, which could potentially be integrated into

a real-time model, is obviously important to dispersal models.

Worner (1994) called for models of species establishment and distribution to be integrated

with GIS, as even then it had become more accessible to ecologists and environmental managers.

Such integration allows researchers to connect models up to heterogeneous spatial data on climate,

landcover, and rainfall among others, that can inuence whether or not a species will spread and

subsequently establish in a given region. To date however, dispersal modellers have been slow to

make full use of GIS, likely due to the computational limits at the time and di�culty in obtaining

suitable data for model calibration and validation. The lack of data is still a di�culty but not

always because the data does not exist, instead the data that has been collected is often kept

under restrictive intellectual property clauses that impede research. Pressure on the major GIS

systems to provide more simple interfaces to construct models have led to inbuilt scripting tools,

and extensions such as ESRI ArcGIS’s ModelBuilder (ESRI 2007).

Two example modelling frameworks integrated with GIS are MASIF (Gage et al. 2001) and

BioSIM (R�egni�ere & Nealis 2002). These both run models that were originally non-spatial, the

results of which are then interpolated over a series of di�erent points in a region. The models

make use of spatial data but do not have interaction between simulation points. Clearly such

pre-existing models can easily be used, however in these models true spatial dynamics are still

missing.

The di�culty of constructing models, whose populations and individuals interact spatially and

temporally, is that GIS are primarily designed to process the spatial aspects of reality rather

than the temporal aspects. Maps within GIS are generally a snapshot of a spatial area at a

particular point in time and don’t indicate how the area is changing. An exception are maps

that speci�cally represent an index of change. A sequential series of maps is often used to record

temporal change, although this can become prohibitive over large spatial and temporal scales

because of data storage restrictions. Data storage capacity however, is constantly increasing

(Grochowski & Hoyt 1996, Grochowski & Halem 2003) allowing larger areas and longer timescales
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to be modelled, along with �ner spatial and temporal resolution. Ideally, the extension of current

data models and data structures (for an overview of data models and structures see Peuquet 1999)

would allow time-variant processes to be more naturally and e�ciently supported. One way this

can be achieved is to use 3-dimensional raster maps1, where slices of the 3d map represent �xed

points in time.

An investigation on various species in the ecosystem of the Bornh�oved Lakes District, using an

Individual Based Model (see section 2.11), attempts dynamic spatial modelling in GIS (Breckling

et al. 2005). Breckling et al. (2005) simulated the movement of individuals over heterogeneous GIS

landscape, although not surprisingly the model is con�ned to a limited area of 60 ha as simulating

many individuals can become computationally expensive. This is especially true for species with

high reproductive rates such as insects.

There are several ways of developing a model that makes use of GIS data. Each approach varies

with respect to how much it integrates with a given GIS environment. The choice of approach

depends on the way in which the model makes use of the spatial data provided by the GIS, but it

is also dependent on the modellers preference as well.

3.1.1 Model Linkage to GIS

There are three potential ways in which to connect a model to a GIS, which vary in how closely

coupled the model is to the GIS.

Loosely coupled models

In a loosely coupled model the GIS and model remain separate but they use the same format for

geographic data �les. This makes the geographic information portable so that the model and the

GIS can both access and modify it. In a loosely coupled model the user uses the GIS to save

information relevent to the model, then the user uses the model to load the same data and carry

out the process being modelled. The GIS can then be used to load the model’s output for analysis

and visualisation.

Closely coupled models

Closely coupled models are intermediary systems for models that need more GIS functionality

than simply reading the data in a map. These models use a scripting language provided by the

GIS to access GIS functionality.

1http://grass.itc.it/grid3d/
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Sometimes a distinction is made between close and tight coupling (below) however the dis-

tinction is small. For example, the GRASS GIS (GRASS Development Team 2006) is driven by

console commands - thus normal operations are carried out in what some users might consider

a scripting language. Indeed, by combining these operations into a �le that lists the relevent

commands one can create a closely coupled model.

Tightly coupled models

Another name for these types of model are integrated models. Tightly coupled models share a

common interface with the GIS, and development of a model has to be done through the use of

GIS library calls. This makes it di�cult to allow the model to be used in alternative GIS systems

as it is speci�c to the GIS chosen and integrated models are essentially extending the functionality

of the GIS.

The reason for tight coupling however, is that the model has more control and it can implement

operations that are not a standard part of a GIS. Tight coupling also bypasses any intervening

implementation layers between the model and GIS so that the model speed and e�ciency tends

to be greater than the other linkage methods.

A cautionary note about these models is that, if integration is based on closed monolithic

systems, then there is high risk that the model will be costly (Fedra 1996). A tightly coupled

model linked to a closed, monolithic GIS is at the mercy of the GIS vendor to keep the GIS

maintained and any changes a vendor makes may cause compatibility issues with existing models.

3.2 Architecture and Design

MDiG was developed as a mixture of closely- and tightly-coupled components (see above) for the

GRASS (Geographic Resources Analysis Support System) GIS environment (GRASS Development

Team 2006). The tightly-coupled components allow direct and fast access to GIS library functions

for model behaviours that required rapid execution. At the same time, a closely-coupled model

manager was designed to avoid dealing with the intricacies of low-level code. GRASS lends itself

to modular development, since every GIS operation is a separate program that runs within the

GRASS shell. This shell de�nes information such as the current spatial region that is of interest,

working resolution, the database being accessed, and other geographic meta-data. In other words

the shell provides an environment in which geographic tools may be used.

Using GRASS as the underlying GIS provides some protection against the closed, monolithic

systems mentioned in the previous section. GRASS is open-source software that allows any devel-
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oper free access to the source code so that they can modify it - so long as they provide any changes

made to other developers (Gay 2002). This philosophy means that anyone with the time and in-

clination can modify and improve GRASS. It also prevents users from being reliant on a piece of

software that suddenly becomes antiquated or stops being supported by the vendor. Open-source

software is always available to be modi�ed and maintained, even in the unlikely event that all the

current developers of GRASS left the project.

Spatial models of populations can treat both space or time as discrete or continuous (Berec

2002). In this thesis a discrete raster format was used to represent population distribution and

model dispersal, because this �ts more closely with pre-existing metapopulation models. The

raster representation of population distribution means that the model is implicitly discrete in

both space and time.

Raster maps can easily represent patch- or lattice-based models. In MDiG, I use the term

patch, to refer to information across multiple map layers but within the same spatial region of a

raster cell.

3.2.1 MDiG - A framework to manage simulations

MDiG consists of a piece of software referred to as the controller (Fig. 3.1) that runs within the

GRASS GIS shell. It controls the execution of individual modules that model dispersal and other

behaviours of the population. The controller also performs \house-keeping" duties such as naming

maps and displaying the progress of the species distribution.

Dispersal models are described as XML (eXtensible Mark-up Language, Cowan et al. 2006) that

specify module and simulation parameters (see below). The controller is responsible for updating

the XML model de�nition with simulation results, and allows GIS commands to be carried out on

all maps in a simulation replicate, maps in all replications for a given parameter set, or all maps

related to the simulations de�ned in the XML �le.

A modular approach

The model architecture is designed to be modular and extensible, to cope with species using dif-

ferent modes of dispersal to spread over a landscape (Neubert et al. 1995, Shigesada & Kawasaki

1997, Buchan & Padilla 1999, Suarez et al. 2001) and also to facilitate future research by allow-

ing inuences on dispersal, additional to those investigate here, to be easily incorporated and

investigated.

To achieve a modular framework, the main MDiG software is designed to be a minimal,

38



Figure 3.1: The model architecture consists of a controller that reads in a model de�nition and
then manages a series of modules that sequentially modify a population distribution. t indicates
the current time-step, and n is the number of modules that comprise the simulation.
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administrative system. The dispersal dynamics are carried out by separate modules. Each module

takes an input map that represents the current distribution of the species of interest and then

modi�es this map in a way that reects the aspect of dispersal the module is designed to simulate.

The change between the maps reects the e�ect of the module during part of a timestep (since

more than one module may run during a timestep, although they are called sequentially), and the

length of time this step represents is left to the model designer to decide.

The modular system easily allows new dispersal methods or new aspects that a�ect the dispersal

of a population to be implemented in MDiG. Such a system is more easily maintain and editing

one module to add new functionality will not inadvertently introduce errors into other modules.

Simulation process

When a simulation is run, the following process is carried out (Figure 3.1):

Initially, a model de�nition �le is read that fully describes the simulation, such as the order of

the modules and the number of time-steps the model will run for. The controller takes a map of

the initial species distribution and passes it to the �rst module speci�ed in the de�nition. Once

the module has �nished, its output is taken by the controller and passed to the next module.

This process is continued until no further de�ned modules are left to run. Once all modules in a

timestep have been completed, the controller increments the timestep and begins the process again

using the output from the �nal module of the previous time step as input to the �rst module.

At the end of each time-step, analyses may be carried out and statistics can be calculated.

Alternatively, analyses can be carried out retrospectively after the simulation has been completed.

A standard for dispersal models?

The model de�nition �le is a portable �le format known as XML (eXtensionable Markup Lan-

guage). The exact layout of this �le is speci�ed by an XML schema that de�nes where and

how dispersal events, lifestages, results, and other model aspects are speci�ed. By making this

model de�nition format portable and open, it means researchers who don’t use the GRASS can

implement the model in another GIS if they choose, thus making MDiG interoperable.

An existing pest dispersal simulation tool called PestSpread (Overton et al. 2004) inuenced

the design of MDiG and similarly de�nes models using XML. Initially the PestSpread format was

adhered to, but was found to be too limiting for the needs of spread models used in this study.

Features not available in the PestSpread format included lifestages dependent dispersal, multiple

replicates, and prede�ned analyses. Recent renewed interest in PestSpread2 may see it incorporate

2J. M. Kean, pers. comm.

40



some of the extensions in MDiG and hopefully a interoperable format can be arrived at.

This �le format for specifying dispersal models has been dubbed DispersalML (Dispersal

Markup Language) and means that the work around MDiG isn’t just a speci�c software im-

plementation but also a proposal for a standard �le format that speci�es dispersal models in

GIS.

3.3 Dispersal model modules

A brief summary of the modules chosen as part of this thesis, and the dispersal and population

dynamics that they implement is given in Table 3.1, with in-depth detail given in the following

sections. Each module can be parameterised in a number of ways, and can be included more than

once (or not at all) in a time-step.

Except for the growth module (Fig. 3.1), all modules have the ability to work either with

population based models, where the number of individuals in each patch is simulated, or with

presence/absence models, where a boolean ag represents whether the species is present in that

patch or not (Fig. 3.2). The growth module, and some options for other modules only apply to

population based models and these are mentioned in the module descriptions.

One of the bene�ts of creating a tightly coupled model within GIS is that the model can run

at the current working resolution of the GIS environment, allowing �ner scale simulation when

desired. Module parameters are rarely resolution independent however (Chapter 4), so care must

be taken when using these modules at di�erent resolutions.

Another bene�t is that many of the tools within a GIS are, in and of themselves, able to be

used as modules. In particular the GRASS command r.mapcalc (Shapiro & Westervelt 1991) is

able to perform map algebra that can carry out many mathematical operations across multiple

maps and implement simple rules such as those that a cellular automata might employ.

In the module sections, the module and parameters names are shown in bold font for clarity.

3.3.1 Local Dispersal

One of the most ubiquitous dispersal mechanisms seen in modelling is the contiguous di�usion of

individuals. Contiguous di�usion is a result of the apparently stochastic behaviour of individuals

leading to deterministic di�usion when averaged over many dispersal events (see section 2.6). The

local module simulates this di�usion without using dispersal kernels. For every patch within the

input distribution that contains individuals, the local module evenly spreads a proportion of the

individuals to the neighbouring patches, de�ned below.
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(a) Population model

(b) Presence/absence model

Figure 3.2: Population vs. presence/absence models. Population spread models record individual
abundance in each patch (abundance on z-axis of sub-�gure a.), whereas presence/absence models
purely indicate whether the population exists in a patch.

Table 3.1: Model modules.
Module Description

growth Population growth that includes birth, death and density
dependent processes.

local Local contiguous dispersal allowing arbitary neighbourhood
shapes. A speci�ed proportion of individuals are dispersed.

kernel Stochastic dispersal using a Poisson distribution to gener-
ate dispersal events and dispersal kernels to determine the
distance travelled.

survival Probability of population within a cell surviving to the fol-
lowing year based on an underlying suitability or survival
map.
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The proportion of individuals that spread from any patch can be speci�ed as a parameter

and which patches are considered to be neighbours of any given patch depends on the values of the

radius and shape parameters. The radius parameter indicates the extent of the neighbourhood,

where a value of 1 indicates that the surrounding 8 patches are in the extent of the neighbourhood,

a value of 2 means the surrounding 24 patches, and so on. The shape parameter is a left to right

(west to east), top to bottom (north to south), binary representation of which patches in the

neighbourhood’s extent are actually included as part of the neighbourhood (Figure 3.3).

Both the shape and radius parameters are not resolution independent as they refer to patches

whose size change with resolution. Using the same shape and radius parameters at �ner resolutions

results in the rate of spread being slower since the distance between patches is smaller, whereas

at coarser resolutions the rate of spread is faster. Altering the proportion of the population that

spreads however, may compensate for the di�erence in spread between resolutions.

The local module provides an alternative to using a dispersal kernel with a large number of

proximate events (see section 3.3.2). Dispersal kernels for contiguous dispersal are not computa-

tionally tractable. Sampling a dispersal kernel a su�cient number of times to approach average

contiguous di�usion would require more computation than simply occupying neighbouring patches.

Also, most literature presents only the average rate of spread giving no indication of the under-

lying distribution. This means it is simpler to use a model with a constant and deterministically

spreading population distribution.

The local module can also represent presence or absence values instead of population counts

(Figure 3.4). In this case the proportion parameter is discarded and the module is analogous

to a two state cellular automata, where each patch is occupied in the next time-step if the neigh-

bourhood, when rotated � radians, contains a present patch.

1
11

1

0

0 0

0
1

010111010

Figure 3.3: An example of a local module neighbourhood created using a radius of 1 and shape
value of 186. This value is equivalent to the binary string 010111010, with ones indicating what
patches in the radius are in the neighbourhod. The binary string maps left to right, top to bottom,
for patches in the radius. The black patch represents the current patch being processed.
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Figure 3.4: Subsequent distributions after applying the local dispersal module with shape 186 to
a presence-absence distribution for 10 time steps. The gray cells indicate newly occupied patches.
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3.3.2 Kernel based dispersal

The kernel module represents jump and long-distance dispersal and is based on the dispersal

kernels used in partial di�erential equations. A dispersal kernel represents the probability a dis-

persal event travels a certain distance (Hastings et al. 2005). Unlike the local dispersal module

long distance dispersal usually results in non-contiguous areas of population and is therefore suit-

able for modelling strati�ed di�usion (section 2.3.2) as well as rare long distance dispersal events,

depending on the kernel distribution chosen and the frequency of dispersal events.

For each occupied raster cell a Poisson process is used to generate how many dispersal events

originate from it (similar to the strati�ed dispersal model of Shigesada et al., (1995)). A Poisson

process is ideal for modelling the occurrence of random events in time (Zar 1999). The frequency

parameter is the mean of the underlying Poisson distribution, �, and represents the average number

of dispersal events that an occupied cell generates. � can be �tted to distribution data based on

the number of new occurence sites detected in a year, divided by the number of pre-existing sites,

as this gives an average of how many dispersal events are generated per site.

For each dispersal event generated, the kernel module samples the probability distribution of

the kernel to determine the distance travelled by the propagule. The module accepts a distri-

bution parameter for specifying the type of distribution used for these the event distances, and

accepts parameters for the distribution to �t it to data on the spatial spread of the species being

modelled. The model then samples a uniform distribution in the range [0; 2�] for the angle or

direction that the dispersal event travels in. The destination cell is calculated using the sampled

angle and the sampled distance from the source cell and an individual propagule is transferred to

that cell.

Kernel distributions

A dispersal kernel decribes the probability of a propagule dispersing a certain distance from a

source population. Several kernel distributions are implemented into the kernel module. Others

can be added relatively easily.

� A generic kernel (Clark, Macklin & Wood 1998), which can represent several distributions:

k(x; d; s) =
1

n
e
�(

x

d
)s

(3.1)

where k(x) is the likelihood of �nding a propagule at distance x from the propagule source,
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Figure 3.5: The generic dispersal kernel for several values of s. s = 0:5, s = 1 (Laplace or negative
exponential), s = 2 (Gaussian), s = 3 (Ribbens).

d is the distance parameter, s is a dimensionless shape parameter, and n is a normalisation

constant to make the integral of the probability function sum to 1. For one dimension (which

is used when sampling the distance of events):

n =
�( 1

s )d

s
(3.2)

where � is the gamma function.

This dispersal kernel is elegant as it can represent several distributions using one expression.

Altering the shape parameter s morphs it into replicas of named distributions such as the

Exponential (s = 1:0) or Gaussian (s = 2:0) distributions (Figure 3.5). However, it is di�cult

to integrate and invert into the form required for sampling (see Section 3.3.2, below). To

overcome this, numerical methods are used for calculating integrals when sampling this

kernel.

� Cauchy distribution - also known, among physicists, as the Lorentz distribution or the

Breit-Wigner distribution:

46



0 1 2 3 4 5

0.
05

0.
15

0.
25

Probability Density Function for Cauchy kernel

Distance from source (x)

P
ro

ba
bi

lit
y 

de
ns

ity

γ = 1
γ = 2
γ = 3

Figure 3.6: The Cauchy dispersal kernel for several values of .

k(x; ) =
1

�[1 + ( x
 )2]

(3.3)

where  is the scale parameter.

The Cauchy kernel (Figure 3.6) is of particular note as it has in�nite moments and can

be useful for modelling distributions with rare but extreme values, such as in the case of

long-distance dispersal (Shaw 1995).

� Exponential or Laplace distribution (Figure 3.7):

k(x; �) =

8

<

:

1
� e�x=� ; x � 0;

0 ; x < 0:
(3.4)

where � is the scale parameter.

Estimating parameters

Parameters for the chosen distribution can be estimated by recording the nearest neighbour dis-

persal distances between occurrences in distribution data from one year to the next (or whatever

time-step is appropriate) and then �tting the probability distribution to the frequency distribution

of distances.
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Figure 3.7: The Exponential dispersal kernel for several values of �.

Chapter 5 describes how parameters were derived for Argentine ant from its occurrence data.

Sampling dispersal kernels

Dispersal kernels are probability density functions (PDF) but for random sampling purposes the

inverse of the cumulative density function (CDF) is needed. The cumulative probability can be

obtained by the integral:

CDF(n) =

Z n

0

PDF(x):dx (3.5)

The CDF allows us to utilise the Golden Rule for Sampling which originates from a letter from

John von Neumann to Stan Ulam in 1947 (Eckhardt 1987):

1. Sample a random number R from U [0; 1] - where U [0; 1] is a uniform random number in the

range [0; 1].

2. Equate R with the CDF: F (x) = R

3. Invert the CDF and solve for x : x = F �1(R)

x is random number drawn from the PDF. In this case x is the distance travelled by a dispersal

event.
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Impact of forcing a continuous kernel into discrete space

Dispersal events with distances that are insu�cient to leave their source patch are discarded. This

results in a threshold distance (that varies depending on the angle the dispersal event travels

because patches are rectangular instead of circular) before an event becomes potentially e�ective.

As the distance travelled by dispersal events is measured from the centre of the the patch, short

distances represented by the distribution kernel are truncated by the boundaries of the source

patch. The probability that a dispersal event is ine�ective due to this truncation is given by the

integral:

P<r = 4

Z r

2

0

Z r

2

0

k(
p

x2 + y2)

2�
p

x2 + y2
:dx:dy (3.6)

where r is the resolution of simulation, P<r is the probability that the event lands within the

source patch, and k is the dispersal kernel. Consequently, the probability that a dispersal event

is e�ective is equal to 1 � P<r, and is inuenced by kernel parameters and simulation resolution.

The consequences of dispesal kernel truncation and resolution are considered in Section 4.2.

3.3.3 Patch Survival

The survival module can utilise either a value, or a map containing values, as a parameter

representing the probability of the population in each patch surviving to the next simulation step.

For every patch that is occupied, the module samples a uniform distribution in the range [0; 1] and

if the value sampled is greater than the probability of survival (i.e. the sampled value indicates the

patch didn’t survive) then the patch becomes unoccupied. If a map is used, the survival probability

is taken from the raster cell corresponding to the location of the patch being processed. The map

essentially represents habitat suitability and the module reects the di�culty that populations

have establishing in unsuitable regions. The habitat suitability map can be created using various

statistical and machine learning techniques along with manipulation of GIS data (see later in this

section).

At the very minimum the survival module de�nes the geographic border of the model by elim-

inating individuals that disperse into completely unsuitable habitat, for example when terrestial

species disperse into bodies of water. The module becomes more useful however, when climate,

land-cover, and land-use are incoporated to construct a habitat suitability map.

In a presence-absence simulation the survival probability, whether taken from a constant value

or from a map, is used as the probibility that the population in the patch will survive to the next

time-step.
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Using the survival probabilities directly can also be applied to population-based simulations,

or optionally the probabilities can be density dependent. When a population establishes and

increases in abundance within a patch, it becomes less likely that the entire patch will become

extinct. This behaviour is analagous to an strong Allee e�ect, since beyond a certain threshold,

the chance the population becomes extinct becomes zero. In a population-based simulation with

density-dependence, the survival probability is given by:

P (Survival) = 1 � 1 � s

Nx
(3.7)

where s is the probability of survival for the patch, N is the population size in the patch, and the

parameter x de�nes the scaling of the extinction risk with population size. The equation is based

on the extinction equation often used in metapopulation models (Hanski 1998), although in such

models, patch area is used as a surrogate for population size. Hanski (1998) provides justi�cation

for this equation, and also demonstrates s = 2r=v as a robust result of his investigation, where r

is the intrinsic rate of population growth, and v is the variance in r.

By itself, the survival module could potentially result in all populations becoming extinct.

However, the addition of dispersal between patches imitates scenarios in metapopulation theory

that demonstrate how multiple independent sites, linked by dispersal, can survive (Levins 1969).

An alternative to stochastic extinction used in this module is to supply a map to the capacity

parameter of the growth module (Section 3.3.4). The capacity parameter speci�es the maximum

population or carrying population allowed in any patch. Unsuitable habitat would have zero or

very low capacity, and highly suitable habitat would have a much greater capacity.

Creating regional suitability maps

Including di�erent sources of GIS data into a general suitability map before the simulation allows

interactions between climate, terrain and other data to be calculated a priori and saves on the

amount of computation required during the simulation. Using a suitability or survival map also

allows the use of any method that creates such a map.

Estimation of parameters representing dispersal survival and success is di�cult. Dispersal suc-

cess is an important parameter in spatially explicit models that may be prone to error propagation

(Ruckelshaus et al. 1997) unless the method of creating the survival map is correct. However,

Mooij & DeAngelis (1999) and South (1999) indicate that error propagation in spatially explicit

population models need not always be as great as Ruckelshaus et al. (1997) reports.

Suitability maps are also referred to as potential distributions, or niche distributions models.
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The term potential distribution is used because physical barriers, distance, insu�cient population,

and other factors prevent the species from immediately occupying all suitable regions. Within

the context of dispersal and the dynamics of species spread, the potential distribution can be

considered the eventual end point, or goal, of the dispersal process, although it may never be

reached. Niche models link back to Hutchinson’s (1957) fundamental- and realized-niche concepts,

by trying to construct a spatial representation of a species’ niche.

There are numerous ways to create suitability maps and they can be based on a wide range

of data. Some are based on correlations between pre-existing populations and variables such as

climate and habitat and then these relationships are used to project a species distribution on

other regions (Segurado & Ara�ujo 2004). Others use expert opinion (Harris 2002) or phenological

models (R�egni�ere & Nealis 2002, Pitt et al. 2007) to create suitability maps.

Existing distribution data has often been used for prediction of species distributions 1) within

the same region and resolution (Guisan et al. 1998, Olden & Jackson 2002, Segurado & Ara�ujo

2004, Elith et al. 2006), 2) within the same region but at a di�erent resolution (Ara�ujo et al. 2005,

McPherson et al. 2006), 3) between di�erent regions (Fielding & Haworth 1995, Thuiller, Lavorel,

Ara’ujo, Sykes & Prentice 2005, Randin et al. 2006, Segurado & Ara�ujo 2006), or 4) di�erent

time periods (Austin 1992, Huntley et al. 1995, Sykes et al. 1996, Berry et al. 2002, Peterson et

al. 2002, Thuiller, Richardson, Pysek, Midgley, Hughes & Rouget 2005, Ara�ujo et al. 2006, Harrison

et al. 2006).

Niche-based species distribution models have been widely used and are usually based on pattern

recognition approaches, where associations between geographic occurrence and a set of predictor

variables are explored to support statements about the mechanisms governing species distributions

(Ara�ujo & Guisan 2006).

Layers from the di�erent methods of calculating potential distribution may also be combined

using layer manipulation within GIS, if necessary weighting them by how much we believe them

to be accurate. Some existing tools and methods for generating species distribution models are

briey described below and can be used to create suitability maps for the survival module (see

Kriticos & Randall, (2001), for a broader and more in-depth comparison between some of the

techniques):

� CLIMEX is a computerised system which describes the suitability of the climate for any

poikilothermic organism and its potential for growth at any geographical location and/or

time (Sutherst & Maywald 1985, Sutherst et al. 1999).

� Neural networks can be trained on existing species distributions and any potentially relevent
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spatial data, before being applied to new regions. Gevrey & Worner (2006) does this at a

coarse scale but it is equally applicable at �ner scales. Similarly, other machine-learning

methods such as Genetic Algorithms, as used in the GARP (Genetic Algortihm Rule-set

Production) software (Stockwell 1999), or decision-trees as used by Peng (2000).

� The lifecycle or phenology of a species might be modelled across a landscape to determine

what areas can allow the complete development of the species. For insects, this can range

from relatively simple degree-day models which calculate the cumulative number of degrees

above a threshold temperature that occur annually (e.g. Hartley & Lester 2003), to mechanis-

tic phenology models based on extensive laboratory development studies. R�egni�ere & Nealis

(2002) and Pitt et al. (2007) use temperature driven phenology models to judge whether

a region is suitable for Gypsy moth (Lymantria dispar), with suitable regions being those

that allow a stable seasonality to occur. Further details on the Gypsy moth phenology-based

niche model applied to New Zealand are given in Appendix A.

� Where suitable distribution data is not available, expert knowledge is sometimes relied on,

such as in the case of Argentine ant (Linepithema humile) where Harris (2002) uses literature

sources to categorise the land-cover database of New Zealand into di�erent risk levels.

A number of issues should be considered when developing suitability maps or niche-models

and Ara�ujo & Guisan (2006) outline some challenges for species distribution modellers, such as

sampling methods, model parameterisation, and model evaluation strategies. Ara�ujo & Guisan

(2006) also distinguish between niche-models that yield projections of potential habitats for species

and niche-models that incorporate spatial factors, such as dispersal, that represent the potential

geographic distributions of species. Since dispersal is modelled separately in the simulation frame-

work, through kernel and nearest neighbour dispersal modules, only niche-models without spatial

factors should be used in MDiG.

Care must be taken when dealing with an invading species. If the sampled distribution data

comes from a species that is still spreading, and is used in model calibration, the niche-models

developed from such data may seriously underestimate the potential range of the species’ niche

(Ara�ujo & Guisan 2006).

3.3.4 Growth

The growth module models the change in the number of individuals within a cell from one

timestep to the next. Obviously, if a model is only simulating presence-absence dynamics then
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the growth module isn’t necessary as it only works on population numbers. Although the module

is named \growth" it may result in a decrease in population, depending on the parameters it

is given. Such a decrease may be because of Allee e�ects or from a patch’s population number

overshooting it’s carrying capacity. The capacity parameter indicates the maximum population

size possible in a cell, and can be speci�ed as a single global value, or as a map whose values

indicate the maximum population size at each patch.

The exact dynamics of the growth module are determined by the underlying di�erence equation

chosen and the values of its associated parameters. A number of growth equations have been

described in the literature. A selection that encompasses some of those that have been used in

dispersal models have been implemented in the growth module and can be selected by specifying

the function parameter when using the growth module (Table 3.2 and see below).

Including Allee E�ects

Some of the equations can exhibit an Allee e�ect that is characterised by a positive correlation

between population density and the per capita growth rate when the population density is low.

There are two classes of Allee e�ect, a weak Allee e�ect that either maintains population density

at low levels or has only very gradual growth before higher population densities are reached

(Lewis & Kareiva 1993) and a strong Allee e�ect that has negative population growth below a

critical population density. This critical population density, n�, is an unstable equilibirum for

deterministic models. For stochastic growth models this critical density usually manifests as an

inection point to the time to extinction: populations that are smaller than n� accelerate towards

extinction as they decline (Dennis 2002).

Many species have been shown to exhibit Allee e�ects, for example plants like the annual herb

Clarkia concinna (Groom 1998), invertebrates such as the Glanville fritillary buttery (Kuussaari

et al. 1998), and especially sexually reproducing species where mate-�nding can limit reproductive

success (McCarthy 1997). The impact of Allee e�ects on invasive species is potentially signi�cant

due to beachhead and dispersing populations often arriving at low population densities (Lewis &

Kareiva 1993). The existance of Allee e�ects can be exploited to assist in the eradication of alien

species (Liebhold & Bascompte 2003).

Growth Equations

To describe the growth di�erence equations, the following variables are used. Nt and Nt+1 are

the populations of the patch before and after processing respectively, r is an index of the growth

rate, and K is the carrying capacity of a patch. Either a map or a constant may be passed as
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Table 3.2: Population growth functions supported by MDiG. Where Nt is the population at time
t, r is an index of the growth rate, and K is the local carrying capacity (see relevent sections for
the de�nition of any other variables).

Name Equation Reference

Logistic growth Nt+1 = Nt + rNt(1 � Nt

K ) Verhulst (1838)

Beverton-Holt Nt+1 = rNt

(1+ r�1

K
Nt)

Beverton & Holt (1957)

Ricker Nt+1 = Nte
(r(1�

Nt

K
)) Ricker (1958)

Neubert Nt+1 =

�

rNt ifNt < a
1 ifNt > a

Neubert (1997)

Wang Nt+1 =
rN2

t

1+((r�1)N2

t
)

Wang et al. (2002)

Keitt Nt+1 = Nt + rNt(
K�Nt

K )( Nt�C
K ) Keitt et al. (2001)

parameters for growth rate (r) and carrying capacity (K). If a constant is given it is applied to

all patches, but if a map is provided then values are extracted from the map at the same position

as the patch being processed in the distribution map. This allows for a heterogenuous environment

to a�ect the growth and population capacity of species if su�cient supporting data exists.

Thus, an alternative way to use the suitability maps described in the section on the survival

module, is to have them represent a patch speci�c supportable population. An area not deemed

suitable for a species would have a very low capacity for supporting a population, and a suitable

area will be able to support a large population of individuals. Since a lower supportable population

will inhibit spread, this method would result in a much lower degree of patchiness (resulting from

slow even spread) than that which arises from the current method of using chance mortality

(resulting in areas becoming extinct, section 3.3.3).

Logistic growth model:

Nt+1 = Nt + rNt(1 � Nt

K
) (3.8)

where r is the intrinsic growth rate of a population.

The logistic growth model is the descendent of the unbounded Malthusian growth model. It was

initially used by Verhulst (1838) as a demographic model and is an archetypal example of a simple

non-linear dynamical equation that can give rise to complex and chaotic dynamics (May 1976).
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Figure 3.8: The logistic growth curve showing population density Nt (scaled so that K = 1)
increasing with time t for varying values of the intrinsic growth rate r.
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Figure 3.9: The Beverton-Holt growth curve showing population density Nt increasing with time
t for varying values of the population change coe�cient r.
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Figure 3.10: The Ricker growth curve showing population density Nt increasing with time t for
varying values of the intrinsic growth rate r.

Beverton-Holt model:

Nt+1 =
rNt

(1 + r�1
K Nt)

(3.9)

The Beverton-Holt model was initially introduced as a population model in the context of

�sheries (Beverton & Holt 1957). The model exhibits a weak Allee e�ect and r indicates the

population change coe�cient.

Ricker model:

Nt+1 = Nte
(r(1�

Nt

K
)) (3.10)

The Ricker growth model (Ricker 1958) in it’s general form can exhibit a rich variety of

dynamics including limit-cycles and chaos (May 1974) although the consensus from a large body

of research indicates that the most commonly found dynamics in nature are more towards stable

equilibriums, with a few examples of stable limit cycles (Travis 2003).

Neubert model:

Nt+1 =

8

<

:

Kr Nt

K K ifNt < a

K ifNt > a
(3.11)

The growth model from Neubert (1997) has a strong Allee e�ect if 0 � r < 1, a weak Allee

e�ect if 1 < r < 1
a , and no Allee e�ect if r = 1

a . It has been used as a particularly simple example

of a growth model with Allee e�ects to explore what these e�ects do to the speed of travelling

waves in dispersing populations (Wang et al. 2002).
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Figure 3.11: The growth curve from Neubert (1997) showing population density Nt increasing
with time t for varying values of the population change coe�cient r and a constant threshold
a = 0:9.

Wang:

Nt+1 =
rN2

t

1 + ((r � 1)N2
t )

(3.12)

where r > 2. The growth equation in Wang et al. (2002) has also been used for investigating

the impact of Allee e�ects on travelling wave speed in dispersing populations.

Keitt:

Nt+1 = Nt + rNt(
K � Nt

K
)(

Nt � C

K
) (3.13)

The growth equation shown in Keitt et al. (2001) is also known as a cubic (Nagumo-type)

growth function. It exhibits a strong Allee e�ect with C giving the threshold population above

which population growth is positive.

3.4 Analysis modules

Although the type of analysis that is required by a researcher is very speci�c to the question being

asked, several modules useful in the context of species dispersal were developed.

3.4.1 Interpreting results across simulation replicates

After running a simulation one is left with a group of replicates for each set of parameters that

were simulated. Each of the replicates consists of a series of maps representing how the population
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Figure 3.12: The growth curve from Wang et al. (2002) showing population density Nt increasing
with time t for varying values of the growth index r.
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Figure 3.13: The growth curve presented in Keitt et al. (2001) showing population density Nt

increasing with time t for varying values of the growth rate r.
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distribution changed with time. These maps can all be processed and analysed individually, then

the results are averaged across replicates for each time-step.

Alternatively, to assist analysis maps at a particular time-step across all replicates can be

combined into an occupancy envelope for presence-absence models, or a mean population envelope

for population models. These combined maps can be analysed directly to obtain an averaged

result. Such combined maps are also helpful communicate the relative risk between particular

areas indicating whether the area might harbour the dispersing population at a particular point

in time.

3.4.2 Area occupied

The area occupied by a population is often used to measure the rate of a population’s spread

(Hengeveld 1989). Through the use of the r.stats module, included as part of the GRASS GIS

package, the area that a population distribution encompasses can be calculated. r.stats can also

provide data on the distribution of population counts in each patch if the model is population-

based.

3.4.3 Veri�cation and Validation

Veri�cation is the assessment of a model’s ability to �t the data used for training or calibrating the

model and assessing whether it actually does what it is expected to do. Whereas model validation

involves testing a model’s ability to predict events using independent data. Both assessments

indicate how well a dispersal model’s predictions match the observed the data.

Assessment can be carried out either on individual replicate maps or on the combined oc-

cupancy envelopes or mean population maps. The analysis is carried out by comparing either

distribution maps, occupancy envelope, or mean population map, from each year to all the occur-

rence sites that exist on or before that year. These occurrence sites are independent from data

used to calibrate the model.

For individual replicates of presence-absence models

Assessing the predictive accuracy of presence-absence maps versus site data can be done using

confusion matrices. Confusion matrices are constructed by comparing the presence-absence map,

for each year’s output, to all the occurrence sites that exist on or before that year. All sites that

lie within patches that are present in the simulation are true positives, sites that lie in patches

that are not present are false negatives, patches that are present but contain no occurences are
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false positives, and if a patch is not present and does not contain a site it is a true negative.

The measurement of predictive ability can be split into the speci�city, or proportion of observed

negatives correctly predicted, and the sensitivity, or the proportion of observed positives correctly

predicted. The error can then be split into false positives and false negatives (Fielding & Bell

1997, Pearce & Ferrier 2000).

True negatives greatly out weigh all the other measurements since large areas will not be

occupied due to the suitability maps used in Survival. The result is that the speci�city of a

model may not be useful as a metric for assessing model performance. Furthermore, occurrence

data is often incomplete and contains only a subset of actual sites compounding this bias.

Occupancy envelopes and population-based models

The occupancy maps can be assessed for prediction performance either by using the same method

as above, or by setting a threshold on the maps �rst. The reasoning behind a threshold, is

that below a certain population level or chance of occupancy, it is unlikely that the species will

be detected. In the case of mean population maps and occupancy envelopes, a threshold also

limits the area that the model predicts is occupied, which is important in a management situation

where the area requiring monitoring or eradication is an important driver of total cost. Setting a

threshold focusses on the regions that have the highest chance of containing a dispersing species,

theoretically making the model more precise.

3.4.4 Rate of spread

Rate of spread is an important measure of spatial population performance, as it combines both spa-

tial and demographic processes into a single number. Previous studies that use the area occupied

as an indication of the rate of invasion often assume that a distinct population boundary exists.

Modelling long distance events leads to a substantially di�erent scenario where the boundary is

often strati�ed with patches of population ahead of the main front (Shigesada et al. 1995). When

there are su�ciently few individuals or the model is at a high enough resolution then areas behind

what is considered the main front may be patchy with small regions of unsuitable microhabitats

that contain no individuals. This e�ect is exarcebated when a dispersal model is applied within

a heterogenous landscape as there are likely to be many areas unsuitable for population survival,

fragmenting the distribution front further.

The area occupied and general metrics for spread also tend to assume a uniform spread in all

directions, averaging any directional bias. Otherwise distribution spread is assessed qualitatively,
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or analysed quantatively by hand (e.g Schr�opfer & Engstfeld 1983).

Making the assumption the spread is uniform is not appropriate to accurately analyse spread

dynamics in heterogeneous landscapes. In addition, qualitative assessment and measurement of

spread-rates by hand are not feasible for analysing hundreds of replicated simulations. For this

reason the module ros (rate of spread) was developed to calculate boundary positions using a

variety of heuristics that could be robust given patchy distributions and detect spread that’s

potentially directed by landscape structure.

To calculate and compare the position of fronts, the ros module needs a centre point for all

boundary algorithms. The centre point can be provided explicitly based on where an invasion

is known to have originated from, or alternatively the module calculates this centre point as the

mean of coordinates for all occupied cells (Equation 3.14). If used in an abundance simulation

then this mean is weighted by the relative population size (Equation 3.15):

x =

N
X

i=1

xi

N
y =

N
X

i=1

yi

N
(3.14)

xw =

N
X

i=1

wixi

N
yw =

N
X

i=1

wiyi

N
(3.15)

Where (x; y) and (xw; yw) are the mean-centre and mean-weighted-centre coordinates respec-

tively. (xi; yi) are the coordinate of the ith patch, N is the total number of occupied patches, and

wi is the weight of the ith patch, given by:

wi =
pi

PN
i=1 pi

(3.16)

Here pi is the population of the ith patch, and the denominator is the total population of the

species across patches.

The module then separates all occupied cells into a user-speci�ed number of arcs that originate

from the centre, allowing multiple directions and potentially non-uniform spread to be recognised.

If only 1 arc is speci�ed with the arcs parameter then this is an average boundary calculation

suitable only for uniformly circular dispersal patterns. The direction in compass degrees can

be speci�ed for the �rst arc and subsequent arcs are spread evenly around 360�C. For each arc

radiating away from the centre point, a number of metrics are calculated:

� Distance statistics - mean, standard deviation, average deviation, skew, and kurtosis for

the moments of inertia from each occupied patch to the centre.
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� Furthest forward - �nds the furthest forward individual in each arc and uses this distance,

and consequently can give very erratic rates of spread as used in Kawasaki et al. (2006).

� Best cell boundary - This uses the best cell classi�cation method (Sharov et al. 1995)

to place the boundary at a position which minimises the number of incorrectly classi�ed

patches. I.e. all patches behind the boundary should be present or contain a population,

and all patches beyond the boundary should be absent or contain zero individuals. The

method also includes a parameter to specify the relative weight of incorrect positives versus

incorrect negatives.

� Density boundary - This heuristic takes rings around the centre point and calculates the

density for each ring. The border between the rings that have the greatest change between

them is used as the invasion front. In a similar way to how ecotones are boundary areas of

large changes in ecology or habitat, this method �nds boundary areas of large population

density change.

The module can also measure the boundary as distances along parallel strips in a particular

direction from the center point (as done in Sharov et al. 1995).

3.5 Summary

This chapter has outlined a framework for modelling dispersal phenomena in GIS, speci�cally

focussing on the spread of invasive species. A selection of modules that are likely most useful and

generic in application for spread models have been described, along with potential extensions that

could further extend the functionality of the framework.

3.5.1 Relation to existing modelling approaches

� Cellular Automata - All current modules in MDiG can be considered variations of cellular

automata (CA). However, for some modules this requires the equivalent CA to have a neigh-

bourhood the size of the entire simulation region and running such a CA is impractical. For

example, the kernel module, would have extremely complicated rules based on a rule that a

given cell changes in relation to all other cells. Such a rule would involve each cell having a

separate integral to calculate. In MDiG, the kernel module works in the opposite direction

so that each occupied cell has a probability of creating a dispersal event to another site.
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� Partial di�erential equations (PDEs) - MDiG mimics the behaviour of PDEs that are nu-

merically solved as a grid. Numerical solutions are often used when an analytical solution

cannot be found. Unlike MDiG, which uses discrete time and space, PDEs are continuous

temporally and spatially.

� Integrodi�erence equation models (IDEs) - IDEs are similar to PDEs except that they use

discrete time, and thus are more similar to MDiG.

� Metapopulation models - Each patch within MDiG, whether represented as a cell within a

raster map, or as a shape in a vector map, can be considered a separate metapopulation with

population processes occurring internally and dispersal processes occurring between patches.

� Stochastic patch occupancy models (SPOMs) - Like SPOMs MDiG can model the occu-

pancy state of a number of populations, although patches are not necessarily separate in

MDiG. Also, if vector maps were used to represent the patches of suitable habitat and their

occupancy state (see note on vector based dipersal models below), then it would be possible

to model the patch dynamics using discrete time. However, specialised SPOM modelling

software such as SPOMSIM (Moilanen 2004) could likely be more suitable, since MDiG’s

use of landscape complexity isn’t necessary for such models.

� Individual based models - There are two broad categories of spatially explicit IBMs vector-

based algorithms (Lima et al. 1999) and grid-based representations of the landscape and

individual location (Wiegand et al. 1999). MDiG is currently a compromise between these

two methods - as it uses patterns observed from di�usive models with aggregated populations

to drive a model integrated with the landscape. The MDiG framework is extensible enough

however to model both these perspectives.

3.5.2 Consideration of future direction

In the development of a broadly applicable framework for dispersal modelling, many factors and

pre-existing methods of dispersal modelling were considered. All of the modules outlined had po-

tential for extension or for alternative behaviour that may be more appropriate for some dispersal

simulations, these possibilities are described in detail in Appendix B.

Two relatively major directions that MDiG could take are described below. First, the use of

vector based data to model dispersal, and second, the potential for MDiG to be implemented in

other Geographic Information Systems.
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3.5.3 Vector based models

Creating a vector based dispersal model may be an alternative approach to consider in the future.

Vector based models could take the form of an individual based model using individual points to

represent individuals (e.g. Gardner & Gustafson 2004, Breckling et al. 2005), or be similar to the

raster model by recording the extent of a population with a polygon. Both of these have potential

challenges. Modelling a large number of individuals over a large area is computationally expensive

and representing a species’ distribution with polygons requires complex geometrical processes to

split and join polygons as populations split and merge, respectively. Further thoughts on a model

with vector maps and potential modules needed for carrying out dispersal behaviours with them

are discussed in Section B.2.1. The potential use of vector maps however, has been allowed for in

the design of the main MDiG framework.

Interoperability

MDiG has been designed with the intention that it can be implemented to support a GIS other

than GRASS. Another project called VirGIS tries to abstract away from the speci�cs of any

particular GIS (Bernard & Kr�uger 2000) and uses an object-orientated layered architecture to

provide a common set of GIS services for model objects that can be \plugged-in". VirGIS provides

these services by interfacing between a model and the speci�cs of a particular GIS. VirGIS is a

substantially larger project than MDiG, and is also reliant on the VirGIS developers implementing

the link to each GIS system supported. If VirGIS becomes more established, then MDiG could

be adapted to use the VirGIS system, which in turn would allow MDiG to support all the GIS

systems that VirGIS supports.

Each of the modules have been implemented to work with GRASS, and would need to be

separately implemented in other GIS systems to allow MDiG to be truely interoperable. The

modules in this section are those that were thought to be necessary to carry out the research in

this thesis, and would likely be of general use to dispersal modellers. They are suggested as a core

set of modules to be released with an implentation of MDiG.

Alternatively, MDiG can be manually reimplemented in other GIS frameworks and, so long

as an implementation conforms to the MDiG description, could allow model de�nitions to be

shared across frameworks.
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Chapter 4

Analysing Module Dynamics

There are many aspects that one can study when using a spatial model and it is important to

de�ne what dynamics are of interest. This thesis and MDiG are concerned with the dispersal of

an invasive organism through a region, which can be measured both in terms of the extent or area

the population occupies and the speed at which it spreads.

The increase in a population distribution’s area is often measured on experimental invasion

data. Frequently a linear increase in the square root of area is observed (Hengeveld 1989). Other

rates of spread that are based on the spatial progression of a population front are usually de�ned

as the asymptotic velocity of a point or boundary beyond which a �xed density of individuals

lie, in other words the expectation velocity of Mollison (1977). In analytical methods of modelling

spread, these methods only work for non-linear deterministic models when the tails of any dispersal

kernels involved are exponentially bounded. If faced with non-linear stochastic models, a �nite

velocity of furthest forward individuals known as the furthest forward velocity (Mollison 1977)

can be used assuming the kernels used have �nite variance. Such measurements are not directly

applicable to simulation models, but have analagous measurements such as the iterative density

method and furthest forward method described in Section 3.4.4.

Simulation models in comparison to mathematical approaches can give di�erent results (Clark

et al. 1998), so it is important to research how the simulation modules of MDiG behave relative to

their analytical counterparts. Knowing the di�erence in their dynamics can help identify whether

patterns in simulation observations might be a consequence of the modelling technique used and

what the magnitude of any e�ect might be.

Analysis of module dynamics also indicates the consequences of parameter error. Ruckelshaus

et al. (1997) examined the consequence of parameter error through a generalised sensitivity analysis
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of patch size, shape and suitable habitat for a dispersing endangered species in an endangered

habitat. Ruckelshaus et al. (1997) classi�ed possible errors as:

� Misclassi�cation of habitat suitability.

� Incorrect estimation of how far a disperser can travel.

� Incorrect estimation of the mortality rate of dispersers.

All three of these error classes are of importance in invasive spread models simulated with

MDiG, however this chapter primarily focusses on the sensitivity of the parameters and modules

governing dispersal.

In this chapter, I �rst investigate the e�ect of the local module’s dispersal neighbourhood on

the total area occupied by a species. Then I investigate how the kernel module behaves relative

to changes in the dispersal kernel, simulation resolution, and limited environments. The e�ect of

these changes on both the increase in area and rate of spread are investigated.

The simulations all use presence-absence distributions to represent the extent of a population.

The simulations also assume a homogeneous environment as most mathematical models, with

which we want to compare MDiG’s dynamics, make the same assumption.

4.1 Local dispersal dynamics

When utilising the local dispersal module, both radius and shape parameters inuence how a

population of individuals spreads (the proportion of dispersing individuals not applicable to

presence-absence models). The environment is considered homogeneous so that the pure dynamics

of the module are not confounded with environmental factors.

The rate of spread as a conseqeunce of this module alone will always be limited by the radius of

the neighbourhood. However, the total area occupied at any given time will involve the interaction

of existing occupied patches and the number of unoccupied patches their neighbourhoods overlay.

Hypothesis 4.1 The number of patches in the neighbourhood and their spatial arrangement will

determine the area occupied by a population after a given time t with a point of origin at [0,0]

We assume that the patch on which the neighbourhood is centered is always considered part of

the neighbourhood. The originating patch should remain occupied because within an homogenous

environment traditional di�usion doesn’t create gaps in the distribution. If the model was trying

to represent an individual based model - where each patch occupied represented a single individual

instead of a population - then this assumption should be revised.
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Table 4.1: Area of invasion as a function of time for di�erent neighbourhood shapes when initiated
from a point source. All neighbourhoods have a radius of 1, thus the maximum possible area
is when all cells within the radius of 1 are part of the neighbourhood (equivalent to a Moore
neighbourhood). The function for this maximal area is A(t) = (2t � 1)2

Occupied cells Example shapes A(t) Saturation ( lim
t!1

A(t) )

2 144 t 0

3 146 2t � 1 0

3 176, 400 t2+t
2

1
8

4 432, 402, 178 t2 1
4

4a 284 2t2 � 4t + 4 1
2

5 186, 300, 468 2t2 � 2t + 1 1
2

5 472 t2 + t2�t
2

3
8

aEquation isn’t consistant for initial condition.

A variety of shapes for a neighbourhood radius of 1 were considered (Figure 4.1) and the

number of patches that the neighbourhood comprised was recorded. Any neighbourhood that can

be de�ned at a radius of 1 can also be de�ned at radius > 1 by using the correct shape value

(Figure 4.2), thus to prove the hypothesis it su�ces to show that it is true for a neighbourhood

radius of 1.

There are also many shapes that are essentially the same neighbourhood con�guration but

rotated �
2 , �, or 3�

2 radians (e.g. 466 is shape 300 rotated �
2 radians, see Figure 4.3). For a simu-

lation model looking at the orientation of dispersal dynamics this distinction between neighbour-

hood dynamics is important, but when we are considering only the area occupied then rotationally

equivalent neighbourhood shapes give the same results.

Each neighbourhood shape was simulated by the deterministic local module and the total area

recorded at each time step, starting from a single cell occupied in an environment with practically

unlimited space. From both the area recorded, and visual inspection of the distribution changes,

explicit equations were derived for total area occupied after time t and are presented in Table 4.1.

Each equation represents a number of neighbourhood shapes, not only their rotated homologues

but also other con�gurations that result in an equivalent amount of occupied area.

For a local module with a given neighbourhood radius of r, the maximum possible occupied

area at time t is:
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(a) 144 (b) 146 (c) 400 (d) 176

(e) 432 (f) 402 (g) 178 (h) 284

(i) 186 (j) 300 (k) 468 (l) 472

Figure 4.1: Neighbourhood con�gurations with radius= 1 and various shape values. The shape
values have been chosen so that none are rotationally equivalent and that they have a di�ering
number of patches in their neighbourhood.

Figure 4.2: Neighbourhoods with a radius of r can represent all the neighbourhoods with radii
< r. Here, the neighbourhood for shape 186 (left) with r = 1 is identical to the neighbourhood
for shape 1455536 with r = 2.

A(t; r) = (2r(t � 1) + 1)2 (4.1)

This equation is based on all patches within the neighbourhood radius, r, being made part of

the neighbourhood. This is equivalent to a shape value of 2(2r+1), or a boolean string with 2(2r+1)

sequential bits of 1.

Comparing the area occupied by a particular neighbourhood shape with the maximal area

allows us to calculate the percentage of possible area occupied at any time t. Graphing this

percentage over time for each of the area equations in Table 4.1 shows they all tend towards a

limit (Figure 4.4). We term this limit value the saturation, as it indicates to what degree or

proportion of the maximal possible area is saturated by the population’s distribution.

In support of the �rst part of the hypothesis - that the number of patches in the neighbourhood

inuence total area occupied - the saturation of area by neighbourhoods with fewer patches is
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Figure 4.3: Some neighbourhood con�gurations are equivalent after rotation. Here 300 (left) is
the same as 466 (right) if it is rotated clockwise 90 degrees ( �

2 radians).
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Figure 4.4: The saturation, or proportion of patches present out of maximum area possible, for
di�erent neighbourhood shapes and an initial condition of one occupied patch at origin. As model
time progresses the saturation of each shape category approaches a limit.
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generally less then those neighbourhoods with more patches. One exception to this is for shape

284, whose saturation is the same as the 5 patch neighbourhoods de�ned by shapes 186, 300, and

468; and whose area occupied is greater than the other 5 patch neighbourhood, 472, when t > 5.

The neighbourhood with shape value 284 is also interesting because it approaches its limit

from below, unlike the other shape categories that approach their limits from above. This is likely

an indication that the 4 patch, shape 284, neighbourhood is disadvantaged at the beginning in

comparison with the 5 patch neighbourhood con�gurations, but has a more optimal neighbourhood

for dispersal.

This result supports the second part of the hypothesis - that the spatial arrangement of patches

in the neighbourhood also determines the area occupied. The di�erent functions for determining

area occupied by a distribution, even though neighbourhoods may have the same number of

patches, further supports this part of the hypothesis.

Relevence to dispersal modelling

The relevence of this analysis to practical spread modelling is not immediately obvious as it deals

with abstract neighbour shapes that do not have easily conceived real world counterparts. However,

skewed shapes that depart from the traditional von Neumann (shape 186) or Moore (shape 511)

neighbourhoods may be used in modelling to mimic forces that shape dispersal, such as wind

or slope. Knowledge of how a change in neighbourhood shape a�ects the future distribution of

a population helps distinguish what model dynamics arise from which module parameters and

avoids false conclusions being made about the cause behind a model observation.

By connecting this module to an underlying map that describes the spread neighbourhood of

each location in the region, it’s possible to create a form of individual based model, or cellular

automata, that has unique dispersal neighbourhoods for each population or individual (depending

on the scale of the simulation).

4.2 Kernel dispersal

4.2.1 Area occupied

Here I investigate the area a population distribution spread by the kernel module occupies after

each time step. The generic dispersal kernel within the kernel module was selected for this analysis

as it is analogous to other dispersal kernels when given an appropriate shape (s) parameter (see

Section 3.3.2). First, I determine the e�ect of varying the parameters, distance (d) and shape (s),
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Figure 4.5: The probability of a dispersal event leaving its source cell varies as both shape
and distance parameters of the generic kernel are altered. The surface shows the probability of
leaving the source cell, P>r, in a region with a resolution of 1. The probability was calculated by
numerically evaluating the integral in Equation 3.6.

for the generic dispersal kernel, which allows the following two hypotheses to be addressed:

Hypothesis 4.2 Increasing the distance parameter of the generic dispersal kernel will increase

the total area occupied by a spreading population.

Hypothesis 4.3 Decreasing the shape parameter of the generic dispersal kernel will increase the

total area occupied by a spreading population.

The reasons for suspecting these hypotheses to be true is that increasing d and decreasing s

both stretch the kernel distribution and give rise to a greater region being encompassed by the

same cumulative probability (Figure 4.5). The larger the region is, the less likely it is that the

destination patch of a dispersal event will be occupied.

Values of 1, 5, 10 and 15 were used for the kernel distance parameter with the shape parameter

equal to 1 (s = 1). The Poisson distribution for generating dispersal events had a mean of 1.

Each value of d was run in the model for 25 time steps and replicated (n = 50). The simulation

area was constrained to 2400 by 2400 cells, however very few (<1 per replicate) dispersal events

landed outside of the simulation region. For sensitivity analysis of the shape parameter, I set

the distance parameter to 1 and tested shape parameter values from 0:5 to 3:0. I also varied the

shape parameter over [0:5; 1:0; 3:0], with the distance parameter equal to 20, to observe module

dynamics with over an order of magnitude di�erence in the distance parameter.

71



0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Time (t)

M
ea

n 
A

re
a 

(u
ni

ts
2 )

Mean area from varying the value of the generic kernel dist parameter

 

 

2t

d=20
d=15
d=10
d= 5
d= 1

(a) Mean area for varying distance values and s = 1:0
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Figure 4.6: Log of mean area occupied by a distribution versus time, for (a) 5 values of the
distance parameter, d with s = 1:0, and (b) 6 values of the shape parameter, s with d = 1:0.
The total expected possible area (equivalent to 2t) is also shown, which assumes every generated
dispersal event lands in an unoccupied patch.
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Figure 4.7: Normal plot of area data over 50 replications with parameters s = 0:5 and d = 1:0.
The area values shown are those at the end of the simulation (t = 25).

Area distributions

The increase in area is exponential as each existing patch is a potential source for new disper-

sal events. Those dispersal events which successfully establish are then also sources for further

dispersal events in future time-steps.

Non-parametric distribution To accept or reject Hypotheses 4.2 and 4.3 using parametric

methods the area distribution across replications for a particular parameter combination need to

be normally distributed. Normal probability plots such as Figure 4.7 gave an initial indication

that normality holds. The Bera-Jarque Test for normality (Judge et al. 1988) indicated that the

distribution of areas is equivalent to a normal distribution (p = 0:95) after the simulation has run

for several time steps (Figure 4.8). The minimum and maximum outliers were trimmed from the

distribution before applying the Bera-Jacque test.

Early on in simulations the areas vary in relatively large amounts between replications. This

variation leads to the distributions at some timesteps not being deemed normal (P < 0:05) and

is likely due to any given dispersal event having a much greater impact on total area in the early

stages of a simulation. Further on in the simulation the di�erences between replications average

out due to the large number of dispersal events occuring. Figure 4.8(a) shows the progression of

area distribution over time for the various combination of parameter values.
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Figure 4.8: Grid showing the timesteps when a) the distribution of area values between repli-
cations conforms to a normal distribution and b) when the area values are log transformed �rst.
The simulations were run for 25 time steps. The shading indicates the P value for accepting
the null hypothesis, i.e. the area values for a given parameter combination come from a normal
distribution. Black blocks indicate the null hypothesis is rejected (P < 0:05).
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The standard deviations of the area distributions violate the homogeneiety of variance assump-

tion required by ANOVA (analysis of variance) for testing whether their means are signi�cantly

di�erent. A log-transform of the area values could resolve this but as a consequence the distribu-

tions would no longer be considered normal by the Bera-Jarque Test (Figure 4.8(b)).

As the assumptions of a normal distribution and homogeneous variance could not be jointly

satis�ed, a non-parametric test was used for evaluating the signi�cance between area distributions.

Statistical di�erence The results show that increasing the distance parameter increases the

area occupied. This observation can be explained through there being less chance of a propagule

arriving at an already occupied patch (because the population is more sparsely distributed). As a

consequence, by increasing the distance parameter when it is already relatively large, the resulting

increase in mean population area is lessened. This lessening is because the number of new patches

created at each step is limited by the rate the Poisson distribution generates new dispersal events

rather than being limited by a lack of nearby unoccupied patches. Similarly, decreases in the

shape parameter, with the consequence of extending the dispersal kernel’s tail, leads to a greater

population distribution area as the chance of an occupied destination patch decreases.

Inspection of mean area plots (Figure 4.6) suggest that Hypothesis 4.2 and 4.3 are true. A

Kruskal-Wallis test (Gibbons 1985) for values at the �nal timestep (t = 25) supports the visual

observations indicating that shape parameter values of 0.5, 0.8, 1.0, 1.5 and 3.0 have signi�cantly

di�erent mean areas. Shape parameter values 3.0 and 1.5 are not signi�cantly di�erent from

2.0, but 2.0 is signi�cantly di�erent from shape values lower than 1.5 (all p < 0:05). These

tests generally support Hypothesis 4.3, that decreasing shape values lead to increases in the area

occupied. Although as shape values increase the di�erence in total area decreases. This results in

no signi�cant di�erence between the means.

Similarly, all simulated values of the generic kernel distance parameter had signi�cantly dif-

ferent areas at t = 25, supporting Hypothesis 4.2 - increasing the distance parameter results in a

greater area occupied.

Resolution dependence

Another potential inuence on the area occupied by a simulated population distribution is the

resolution at which it is modelled. While coarse resolutions lead to every patch representing a

large occupied area and thus, one assumes, a large source from which insects may disperse, the

destination patch has also increased in area by the same amount so that the Poisson mean for

dispersal events remains constant and independent of resolution.
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Figure 4.9: Mean area resulting from 4 sets of constant parameters in the generic dispersal kernel.
Each set was simulated at resolutions that were factors of 20.

Ideally, a low resolution model would have a coarse increase in area but should be equivalent

to a higher resolution model, hence Hypothesis 4.4.

Hypothesis 4.4 For a generic kernel with set shape and distance parameters, the area occupied,

A, after t time-steps will be independent of resolution.

When working at coarse resolutions (large r) the actual area occupied is di�erent to the number

of occupied patches in the simulation and has to be converted to units2:

A = N � r2 (4.2)

where r is the resolution of the simulation, and N is the number of patches occupied. The

greater the value of r the coarser the simulation.

Simulations for all resolutions that were a factor of 20 were replicated 50 times for all kernel

parameter combinations across s = [0:5; 1:0] and d = [5:0; 10:0], resulting in 24 simulation con�g-

urations and a total of 1200 simulation runs. The initial map consisted of a 40 � 40 patch centred

within a region 2400 � 2400 and was allowed to run for 25 timesteps. The mean of the Poisson

dispersal event distribution, �, was 1 per patch.
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Figure 4.10: Multiple comparisons between area distributions for di�erent resolutions at t = 15.
Each graph is for di�erent values of the s and d parameters of the generic dispersal kernel. The
average group ranks (circles) and ranges (line) are used for comparisons with p < 0:05. The
intervals are signi�cance ranges, not simultaneous con�dence intervals.

The results consistently show the coarsest resolution of r = 20 had a mean area lower than all

other resolutions (Figure 4.9). The magnitude of this di�erence depended on the parameters of

the generic dispersal kernel, although it was judged to have a signi�cantly di�erent median from

the other resolutions using the ranks generated by a Kruskal-Wallis test with the use of multiple

comparison (Figure 4.10). This di�erence is present for all parameter sets at t = 15 and this value

for t was used for comparisons due to some parameter sets resulting in dispersal that was fast

enough to begin being limited by the extents of the simulated area at t > 15.

Interestingly, the mean area values did not show a simple ordering. The areas for r = 1 were

consistently and signi�cantly less than r = [2; 4; 5] and for the parameter set [s = 1:0; d = 10:0]

the mean area of r = 1 was also less than that of r = 10. Resolutions of 4 and 5 had consistently

higher mean area followed by r = 2.

These results are at odds with Hypothesis 4.4. The reason for r = 4 and r = 5 resolutions

having the greatest increases in area, are not clear although several observations can be made:

As discussed earlier (and shown in Figure 4.5), the total volume of kernel probability that

falls within the source patch changes with resolution. Numerically integrating equation 3.6 for

the di�erent resolutions and parameter sets that were simulated, shows that a coarse resolution

decreases the chance that a dispersal event leaves its source (Figure 4.11), which would lead to
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less area area occupied for coarse resolutions. This is counteracted by destination patches being

much larger, so that when an event does occur the increase in area is much greater. Furthermore,

when a destination patch is larger it allows those events that only just reach the boundary of a

patch to occupy the destination entirely with further dispersal events occurring from the center

of that patch, essentially allowing it to move further then it would otherwise. The large, sudden

increases in area at a coarse resolution simulation also leads to a much larger variation in area

distributions.

All these factors combine such that certain resolutions give a more rapid increase in area for

certain generic kernel parameter sets. Further work needs to be done to rigorously describe the

relationship between the increase in area and resolution.

The rapid increase at the start of the simulation (i.e. the initial area at t = 1) for coarser

resolutions is because the surrounding area has no occupied patches but a single successful dispersal

event leads to more area being occupied. As time progresses however, it is easier for new events at

�ne resolutions to �ll in missing patches. Previously it has been thought that the number of foci

is more important than their size in strati�ed di�usion for inuencing the rate of expansion in a

population (Mack 1985). In that case we’d expect the �nest resolution to be optimal. However,

these results indicate that there is actually an optimal patch size that isn’t the �nest resolution for

dispersal in a homogeneous (but discrete) environment, when we assume that destination patches

are the same size as their source. This is obviously an e�ect of discretising the environment, but

could inuence real-world populations that are located in patchy environments.

Limited environmental space The previous experiments used large regions (2400 by 2400

units) to prevent border interactions with the simulation region from overly inuencing the results

(extreme long distance events inevitably reach outside of the simulation region however). How the

dispersal kernel behaves within an environment limited to 200 by 200 unit sized patches is now

investigated. A smaller environment makes it possible for a dispersal simulation to completely

saturate the region by the end of the simulation. Clearly, for any �nite environment over a long

enough period, the dispersal kernel will eventually occupy all the patches, although this period

may be extremely long depending on the size of the environment. Con�ning the dispersal kernel

to a smaller environment allows the e�ect of saturation on spread to be investigated.

A restricted environment increases the likelihood that, as spread progresses, more dispersal

events will arrive outside of the boundary and hence be lost. This reasoning suggests the following

hypothesis:
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Figure 4.11: The total probability of the dispersal kernel that falls within the source cell for a
dispersal event. The total probability volume encompassed by a cell depends on both resolution
and kernel parameters.

Hypothesis 4.5 A limited area will slow the increase in occupied patches relative to the increase

in area for a much larger region.

The following additional hypothesis arises from the observation that spread via the dispersal

kernel is an exponential process. When an exponential process such as growth has a limited

amount of resource its increase follows a logistic function or S-curve. With respect to dispersal

in a limited environment, available patches become scarce and the increase in occupied patches is

expected to resemble a logistic function.

Hypothesis 4.6 When the population is restricted to a limited area, the increase in occupied

patches due to the kernel module will follow a logistic rather than exponential growth process.

To test these hypotheses a region 200 by 200 patches was simulated using a generic dispersal

kernel with all four combinations of parameters d = [1; 10] and s = [0:5; 1:0] for 50 time-steps.

Additionally, a control experiment was run for each combination of parameters where the region

was made to be essentially unlimited. For the control the region was the same as the other kernel

experiments (2400 by 2400). These control experiments were run until the area occupied reached

2002 units2 or more - in other words, the total area of the limited region.

The results showed that all combinations of parameters, except d = 1; s = 1 reached saturation.

Those dispersal kernels that were spread over a greater distance (greater probability of larger

dispersal distances) have a greater chance of dispersing further and less chance of landing in an
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already occupied patch (in other words can escape a cluster of already occupied patches), which

resulted in their reaching saturation of the region more rapidly (Figure 4.12).

Interestingly, the most di�usive kernel parameters with d = 10; s = 0:5 initially increased in

occupied patches slower than the kernel with less di�use parameters d = 10; s = 1:0 but then

pass each other after the inection point (Figure 4.12). This is because dispersal events that

land outside of the region early in the simulation are lost. The di�erence can be observed in the

equivalent control simulation where these events are not lost and in which the increase in area was

substantially quicker.

All parameter combinations that reach saturation also had their control equivalents exceed

them in area in accordance with Hypothesis 4.5. The point at which this occurs not only depends

on the combination of dispersal parameters but also on the size of the limited environment because

the kernel distance parameter, d, scales the probability density function of the dispersal kernel.

Scaling the d parameter with the size of environment will give the same temporal increase in the

proportion of patches occupied.

For d = 10; s = 1:0 the control has less occupied area than the limited environment version

until the inection point at t = 19, this di�erence is not signi�cant however.

The di�erence between the limited environment simulation and the equivalent control simula-

tion reects the number of misses or dispersal events that land outside of the limited environment.

However this di�erence is greater than the number of misses, as dispersal events that are successful

in establishing in the control equivalent feedback into the total occupied area by generating new

dispersal events themselves.

In accordance with Hypothesis 4.6 the increase in area occupied clearly displays the shape

of a logistic growth process (Figure 4.12) with slow initial growth before accelerating past the

midpoint. The increase in occupied area slows as space becomes limited and then �nally reaches

a plateau once the entire environment is occupied.

Logistic growth in area of the distribution of a species has been seen in the introduced Red

Deer populations around Nelson and the upper South Island of New Zealand. These populations

showed a sigmoidal expansion rate in area, with the plateau attributed to the distribution reaching

the surrounding sea and an already extensively occupied area �lling in (Clarke 1971).

Mollison (1987) describes that at broad scales of biological invasion, the increase in distribution

range can be partitioned into periods: an early period of pioneering, a middle period with fastest

change, and a later period of condensing saturation or �ll in (Shigesada et al. 1995). Ewel (1986)

suggested the lag at the beginning to be because of a lack in a suitable habitat becoming available

for the invading species or low probability of new propagates striking the right combination of
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Figure 4.12: Mean area with varying s and d dispersal kernel parameters. Solid lines indicate
the mean area in a limited space of 200 by 200 cells, the dashed lines are the control simulations
in practically unlimited areas.

environmental conditions. However our results show it could simply be from a lack of sources for

dispersal events. An explanation based on environmental heterogeneity is not needed to explain

this lag period (although a limited environment, heterogeneous or not, is needed to explain the

saturation that occurs).

4.2.2 Spread rate

The total area occupied is just one measure of the spatial distribution of a species. Another

measurement of interest is the distance at which occupied patches of the distribution are located

relative to the origin of spread. The Rate of Spread module (ros module, 3.4.4) calculates several

measures of dispersal and spread. Including the statistics on the actual values for distance to each

patch, and boundary calculation methods that de�ne the front of a dispersing distribution.

The results from testing Hypotheses 4.2 and 4.3 were used to create similar hypotheses for the

a�ect of the shape and distance kernel parameters on the distance to the distribution front and

its rate of spread.

Hypothesis 4.7 Decreasing the shape parameter will increase the rate at which the distribution

front increases.

Hypothesis 4.8 Increasing the distance parameter will increase the rate at which the distribution

front increases.
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Note that the de�nition of the distribution front can be determined using several di�erent

methods each of which could result in separate conclusions about the hypotheses.

Analytical models often focus on which conditions are required for a front to travel at a

constant velocity and provide ways of calculating the velocity from dispersal kernel parameters.

Such models also specify how long it takes for the constant velocity to be reached. Some models

have accelerating fronts, speci�cally those that have a distribution kernel with a tail greater than

exponential (s < 1 for the generic dispersal kernel). Whether these cases apply to our simulation

model are explored in the following sections.

Hypothesis 4.9 The distribution front will exhibit the same velocity and acceleration as predicted

by analytical models.

Several measures for the rate of spread are de�ned. First, the mean distance is the average

distance to all occupied patches from the point of origin, and the mean distance velocity is the rate

at which mean distance increases from one time-step to the next. The furthest forward distance is

the distance to the patch that is furthest from the point of origin. The last two measures for rate

of spread, best-cell and density are based on �nding the border for the distribution using iterative

methods and comparing the di�erence in distance between time-steps (For more details, including

references, see section 3.4.4).

The simulation output from the area analysis was used. The mean of relevent values over

multiple replications were calculated so that average behaviour could be assessed. Thus the mean

distance for one replication is the mean distance of patches to the origin, and this mean value

is again averaged across replications. The distribution of the mean distance was expected to be

normal due to the relatively large number of replications (50) and the Central Limit Theorem.

E�ect of the shape parameter

Altering the shape parameter results in an almost constant mean distance velocity for all values

except 0.5 which accelerates at t > 12. This is also an accelerating rather than constant increase

in the standard deviation of distance values for s = 0:5 (Figure 4.13). As hypothesised (Hyp. 4.7),

decreasing the shape parameter leads to greater rates of spread when measuring the distribution’s

progression by the mean distance method.

Furthest forward measurements show a constant increase with no obvious acceleration for

s = 0:5, although the rate does uctuate more as t progresses. Both iterative measures, density

and best-cell, result in acceleration for s = 0:5 only after approximately t = 8. Contrary to the
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Figure 4.13: The mean distance metrics across 50 replications for kernel dispersal with d = 1:0
and varying shape parameter. The di�erence between timesteps (equivalent to the velocity) for
the metrics is also shown.
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Figure 4.14: The mean distance metrics across 50 replications for kernel dispersal with s = 1:0
and varying distance parameter. The di�erence between timesteps (equivalent to the velocity) for
the metrics is also shown.
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other measures, both s = 1:0 and s = 0:8 seem to accelerate briey at t = 9 for best-cell and

t = 12 for density.

In conclusion, the method for measuring rate of spread does not alter the ordering of rates

for di�erent shape parameter values and this ordering of rates is consistent with Hypothesis 4.7.

Conversely, whether Hypothesis 4.9 holds, in other words whether these rates are constant or not,

is dependent on the measurement method.

The skew of distance values and their kurtosis decrease because, as time progresses, the distri-

bution spreads radially away from the point of origin, where there is more space free to be occupied

(as area depends on radius, A = �r2). There will initially be a skew to lower distance values as

the area able to be occupied close to the initial incursion point is limited. However, there are more

available cells at larger distances from this initial point and as the population distribution spreads

outward this will skew the distribution to higher values (Figure 4.13).

E�ect of the distance parameter

There is an acceleration in the mean distance for values of d > 1 at t > 10 although this acceleration

decreases as time progresses and may eventually lead to a constant velocity. A constant velocity

may eventuate because both the iterative measures also accelerate at t = 10 but stop accelerating

and reach a constant velocity by approximately t = 15. Similar to modifying the shape parameter,

changing the distance parameter does not result in acceleration for the furthest forward distance

measurements but rather an erratic but mostly constant velocity (Figure 4.14).

The resulting order of the distance values, of smaller values having less rapid spread rates than

higher values, also indicate that Hypothesis 4.8 is true.

Comparison with analytical models

A frequent observation of analytical models is that they tend to predict a period of acceleration

followed by a constant velocity, given appropriate assumptions (Hastings 1996a). To compare our

simulation results to the behaviour predicted by mathematical models, the di�erence in distance

between time-steps was plotted. This gives a straight line for a constant velocity and a linear

increase for constant acceleration. A regression on the di�erence data for each replication gives a

series of slope values. A t-test was then used to test whether the population of slope values, and

therefore the population of accelerations, has a mean signi�cantly di�erent from zero since zero

slope would represent a constant velocity (Figure 4.15).

For distance, there was no acceleration for the best-cell method, an increasing acceleration

with mean distance, and for density and furthest-forward methods, acceleration only occurred
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(a) Mean front acceleration for s = 1.
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Figure 4.15: The 95% con�dence interval for the mean acceleration of distribution boundary as
detected by 4 di�erent methods: mean distance, furthest forward, best-cell, and density. If zero
is included in the interval then the distribution is not signi�cantly di�erent to zero and thus the
distribution boundary is unlikely to be accelerating.
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with s = 1:0, d = 1:0.

For shape, all measures except for furthest-forward accelerated with s = 0:5. The mean

distance measure accelerated regardless of s and the density-method accelerated for s values 0.5,

0.8 and 1.0.

E�ect of a limited environment on front advancement

Con�ning a distribution to dispersing via the generic kernel in a limited environment truncates

the kernel’s probability curve to the extent of the environment. This suggests that a limited

environment will decrease the rate of advancement for a distribution front.

Hypothesis 4.10 Area constraints will limit the rate at which the distribution spreads.

Using the simulation data from the area analysis in a limited environment showed that a suf-

�ciently di�used dispersal kernel (d = 10; s = 0:5) in the 200 by 200 region begins mean distance

deceleration immediately whereas in an \unlimited" region it continues accelerating (Figure 4.16).

For less di�use kernels (d = 10; s = 1:0; d = 1; s = 0:5) the distance accelerates until the distribu-

tion begins to be a�ected by the region boundary and then deccelerates until no further advance-

ment occurs. This change happens when the entire limited region is occupied by the distribution,

and the deceleration occurs because of \�lling in", this e�ect is also seen in the increase of area

occupied (section 4.2.1, above). For those kernels that do not result in the distribution being close

enough to the boundary in 50 simulated time-steps to be signi�cantly truncated (s = 1; d = 1), the

behaviour is the same as in an unlimited environment, where there is a constant velocity for mean

distance measure. Constraining dispersal events to a �xed area inhibits fat-tailed (or leptokurtic

kernels) more than those that are platykurtic and not exponentially bounded. Additional e�ects of

a limited region include a limited standard deviation of the distance values, and skew and kurtosis

decreasing rapidly.

Furthest forward measurements demonstrate similar results to mean distance, namely the

deceleration observed as the distribution reaches near to the boundary for the dispersal kernel

to be signi�cantly truncated. Iterative measurements of front distance (best-cell and density

methods) all have a delay before acceleration, followed by constant velocity and a decceleration

once the boundary is reached. Interestingly, the best-cell measurement of the population front

of the most di�use dispersal kernel simulated (d = 10,s = 0:5), lagged behind a less di�use one

(d = 1:0; s = 0:5) from t = 10-15. This is because the best-cell algorithm needs a su�ciently dense

number of patches near the origin before the front can expand and the more di�use kernel spreads
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out too quickly at the start for the best-cell method to de�ne a population front. As the patches

near the origin �ll in however, the border quickly accelerates.

E�ect of resolution on front advancement.

It would be ideal that the rate of front advancement is be independent of resolution. However,

given the results for area, this may be unrealistic but provides a reasonable starting hypothesis:

Hypothesis 4.11 The rates for the spread of a distribution will be independent of the resolution

of the simulation.

There is less sampling of the dispersal kernel at the beginning of simulation for coarse reso-

lutions. This is because there are fewer patches in the original distribution. For a resolution of

1 there are 40 � 40, or 1600, unit2 patches while for a resolution of 20 there are 2 � 2, or 4, 400

unit2 patches. Since the Poisson distribution that generates dispersal events uses a mean that is

independent of the patch size area, all resolutions have the same Poisson mean. This independent

mean makes it less likely that longer distance events occur in coarse resolutions than for an equal

area distribution at a �ne resolution with smaller patches. This is reected by signi�cant measures

of furthest forward distances at early t (Figure 4.17).

Resolution also a�ects the iterative measurements of distance indirectly. Because these mea-

surements are inherently based on the area of patches, a �ne resolution gives a gradual increase

in the results whereas coarse resolution leads to a stepping e�ect with step sizes as a function of

resolution. The density method in particular cannot successfully detect the population front for

the coarsest resolution simulated (r = 20).

4.3 Comparison of MDiG dynamics with other models

Certain combinations of modules within MDiG are analogous to the behaviour of existing model

paradigms. For example the survival module is essentially a Markov chain whose state is the

number of occupied patches and whose transition probabilities are made up from the survival

probability for each remaining patch. The expected number of surviving patches for a homogeneous

survival rate is:

E[at] = at�1s (4.3)

E[at] = a0st (4.4)
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Figure 4.16: The mean distance metrics across 50 replications for kernel dispersal in a limited area of 200 by 200 patches. The control lines are the
results for \unconstrained" simulations (limited to 2400 by 2400).
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Figure 4.17: The mean distance metrics across 50 replications for kernel dispersal (d=5.0,s=0.5) in a large area of 2400 by 2400 units and simulated
at di�erent resolutions
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where at is the number of patches occupied at time t, and s is the homogeneous surivival rate.

In a environment with varied survival rates per patch, s can be replaced with the average survival

rate.

Theory based on \open" vs \closed" populations tell us that the eventual result of the survival

module used on its own is complete extinction (except in cases where a population exists in patch

with 100% survival). The survival module on its own treats each patch as a closed population

where introductions are isolated starting events, and these populations theoretically eventually go

extinct with a probability of 1. Open populations are where introductions are recurrent, potentially

inducing rescue e�ects (Brown & Kodric-Brown 1977) that decrease the extinction probabilities of

well connected patches (Moilanen 2004). Open populations converge to a stationary probability

distribution of population sizes, since arriving immigrants are able to restore locally extirpated

populations (Drake & Lodge 2006). The addition of the local or kernel module with the survival

module, turns the patches into a series of open populations that are all connected to varying

degrees depending on the neighbourhood de�nition (in the case of the local module) and the

dispersal kernel (in the case of the kernel module).

The combination of modules can also lead to similarities with other types of model. Combining

the local dispersal module and the survival module, gives rise to the equivalent of a site percolation

model (as described in section 2.10) when the patches have a survival probabilty of 0 or 1. Existing

papers describe how the ratio of suitable to unsuitable patches, and the amount of clustering

they exhibit, can inuence the time until homeostasis: where the population occupies all sites

that can possibly be reached. When this ratio reaches the percolation threshold, a disruption of

landscape connectivty occurs, limiting the area the population can occupy at homeostasis (Gardner

et al. 1987, With 1997).

4.4 Summary

This chapter examined how the parameters of the local and kernel modules a�ect the spatial

spread of a population. Additionally the dynamics of the kernel module were compared to those

of analytical spread models.

The results showed that the local module’s increase in area is dependent not only on the

number of patches in the de�ned neighbourhood but also on the pattern of the neighbourhood.

For the kernel module the results show a clear relationship between the increase in area with

changes to the parameters of the generic kernel, which can represent several other probability

distributions based on its shape parameter. A more di�use dispersal kernel and kernels scaled to
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larger areas (an increase in the distance parameter, d) showed a greater increase in the area of

the population distribution, although not all di�erences were statistically signi�cant. The area

measurements were also normally distributed, although variance was not homogeneous between

simulations so non-parametric tests were needed to test signi�cance.

Spread rates for the expansion of the population front expands were consistent with what

analytical models predict. Dispersal kernels that were not exponentially bounded, so called \fat-

tailed" distributions, tended to accelerate. Although whether this held for di�erent cases was

dependent on the algorithm used to determine the location of population front.

The impact of resolution on area and spread rate was investigated, and a equivalent ordering of

area occupied in relation to resolution was not found. Instead, particular parameter combinations

appear more optimal for certain resolutions. This was suspected to be because of the interaction

between a continuous dispersal kernel and a discrete patch environment, since the size of these

patches are determined by the resolution of the simulation.

When simulations were constrained to a limited region the increase in area and spread rate

were restricted compared to that of unbounded spread. As well, the constraining e�ect impacted

the area of the population distribution before saturation of the environment became obvious,

particularly for fat-tailed distributions.

There are many further investigations that could be carried out on these modules. Including

interactions with heterogeneous environments that have certain characteristics, such as a certain

fractal dimension or ratio of suitable to unsuitable habitat. Interactions between modules are also

of interest, and provide a wealth of possible research avenues.
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Chapter 5

Modelling the Spread of

Argentine Ant in NZ

The primary objective of this chapter was to test the modelling framework developed in Chap-

ter 3 using a species that has data available on it’s spread such that its invasion history can be

reconstructed. Separate data available from outside the study region that can be used to parame-

terise the model to avoid confounding the model results is also a requirement. The Argentine ant,

Linepithema humile (Mayr) ful�lls these requirements.

The second objective is to compare this model to a simple model of radially uniform di�usion

to determine if the extra e�ort building a more complex model is worthwhile.

5.1 Introduction

The Argentine ant is a worldwide pest that is cited as one of the six worse invasive ants (Holway,

Lach, Suarez & Tsutsui 2002) and is listed in \100 of the world’s worst invasive alien species"

(Lowe et al. 2005). Linepithema humile was �rst recorded in NZ in January, 1990 (Green 1990)

and after its discovery at the Mt. Smart, Auckland, site of the 1990 Commonwealth games there

was no attempt to control the species because it was considered already well established.

Argentine ant provides a useful case study of an invasive insect introduction in NZ where no

control attempts were made until substantially after establishment. Thus the distribution data

from monitoring programs show Argentine ant dispersal behaviour mostly without attempts to

slow the Argentine ant’s spread or eradicate the species from New Zealand.
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Figure 5.1: L. humile workers are small (2-3mm long) and are coloured a uniform light to dark
honey-brown. Unlike some ant species there is no strong formic acid smell when they are squashed.
Photo courtesy of Landcare Research, NZ.

5.2 Biology

Argentine ant (L. humile, shown in Fig. 5.1) is known as a ‘tramp’ ant species (Passera 1994),

sharing the label with the ‘big-headed ant’ (Pheidole megacephala, Fab.), and the red imported �re

ant (Solenoposis invicta, Buren). Tramp species tend to have the following features in common

that have made them highly successful invaders (Harris 2002):

� Strong tendencies to move and associate with humans - in the event of a disturbance

caused by the weather, food supply, or human activity, L. humile workers are adept at

picking up larvae and eggs to relocate their nest. The species is able to survive high levels

of disturbance using this behaviour and their close association with human activity means

that human transport facilitates their spread by jump-dispersal (Suarez et al. 2001).

� Unicoloniality - Adventive populations of L. humile e�ectively act as one large colony.

This behaviour, hypothesised to be the result of reduced genetic diversity in introduced

populations, means that individuals do not show aggression to individuals from di�erent nests

(Chen & Nonacs 2000, Liang & Silverman 2000), even though L. humile exhibits inter-colony

aggression in their native range (Tsutsui et al. 2000). Recently however, diet-derived nest-

mate recognition has been implicated as controlling aggressive interactions (Buczkowski &

Silverman 2006). Desite this dietry mechanism, the general lack of inter-colony competition

facilitates higher densities of the species and greater foraging activity (Holway 1998b).

� Interspeci�c aggression - Workers of L. humile display strong aggressive behaviour to

other ant species and displace them through sheer weight of numbers, even though individuals
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of L. humile often lose in aggressive interactions (Holway 1999).

� Polygyny - L. humile has several queens in a colony (0.1 to 1.6 queens per 100 workers,

Keller et al. 1989) resulting in a high reproductive rate, although queens generally live less

than 1 year (Keller & Passera 1990).

� Mating and budding - Mating occurs in the nest and colonies disperse to new sites by

budding, where a group of workers and queens seperate from the main colony and walk to

the new site. Laboratory experiments show colonies successfully establishing with a single

queen supported by as few as 10 workers (Hee et al. 2000).

5.2.1 Diet

L. humile’s diet overlaps greatly with other ant species. Diet is predominantly liquid, with workers

feeding primarily on sugar, while queens and larvae feed mainly on protein (Vega & Rust 2001).

Linepithema humile’s diet includes nectar, insects, seeds, carrion, and honeydew secreted by ho-

mopterans (Suarez et al. 1998). Linepithema humile and other invasive ants often tend and protect

Hemiptera that produce ‘honey dew’ or sweet liquid exudate (Lester et al. 2003). Unusually for

ants, the queens of L. humile participate in foraging and grooming activities (Vega & Rust 2001).

5.2.2 Climatic requirements

L. humile is most active between 10�C and 30�C. Foraging however ceases when surface temper-

atures reach 32�C or drop below 15�C (Hedges 1998) - although 10�C has also been reported as

the lower range for foraging (Markin 1970a).

Oviposition slows during winter and does not occur below a daily mean temperture of 18:3�C.

Eggs, larvae, and pupae develop slower and population numbers decline in colder months (Vega &

Rust 2001). Through their close association with humans, L. humile may persist locally in areas

with unfavourably cold climates (e.g. Minnesota and Illinois in the USA, Suarez et al. 2001). This

local persistance is due to warmer microclimates near structures and human activities providing

regions in which L. humile can survive (Suarez et al. 2001).

Environments with high rainfall reduce foraging time and thus possibly reduce establishment

success (Vega & Rust 2001), while conversely arid climates can restrict distribution due to a lack

of water (Ward 1987, Van Schagen et al. 1993, Kennedy 1998)
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5.2.3 Habitat

Globally, most reports of L. humile are from urban areas (Suarez et al. 2001). However, this species

is also a pest of horticultural land in Australia (Davis & Van Schagen 1993), and low-stature scrub

vegetation is susceptable to invasion (Reimer 1993, Way et al. 1997, Human et al. 1998). Forests

are not known to be invaded (Reimer 1993, Cole et al. 1992), or only have their bordering margins

penetrated by L. humile (Suarez et al. 1998, Ward & Harris 2005).

Edge e�ects, where only the margins of vegetation are colonised, were shown in a study by

Suarez et al. (1998). Argentine ant populations in native vegetation fragments near San Diego

were found to decrease at distances greater than 100m from the edge. Native ant populations

that were possibly displaced were found only at distances greater than 200m into the fragments,

thus indicating that L. humile likely hadn’t established beyond 200m into the vegetation fragments

(Suarez et al. 1998). It is unclear if these observations mean that the process of invasion needs more

time to progress further, or if competition with native species increases further into the vegetation

fragments, or if L. humile cannot penetrate further due to lack of water (Suarez et al. 1998). It has

been suggested that water run-o� from urban developments may provide favourable conditions for

L. humile and a lack of moisture availability appears to limit L. humile’s distribution (Tremper

1976, Ward 1987). Moisture availability will be critical in hot-dry climates where physical distance

to water is clearly an important factor (Holway, Suarez & Case 2002).

In NZ, L. humile has been found to move only up to 20m into forest habitats. In habitats with

a more open canopy, such as mangrove and scrub, the distance penetrated was at least 20m but

up to 60m (Ward & Harris 2005).

In contrast, the inuence of soil substrate is thought to be the limiting factor a�ecting the

distribution of L. humile in western and southern Portugal where it has had a relatively unchanged

distribution for 40 years. This species is common in sand and clay loam soils, but largely absent

in sandy loam soils despite otherwise favourable conditions (Way et al. 1997).

5.3 Impacts

More so than other ant species, L. humile tends to be extremely abundant once established. Inter-

connected nests and variable methods of trapping, however, make it di�cult to accurately assess

abundance. Linepithema humile in high abundance can result in a decline in local biodiversity

for both invertebrates (Cole et al. 1992, Human & Gordon 1997, Bolger et al. 2000) and small

vertebrates such as the Californian gnatcather (Sockman 1997) and the horned lizard (Suarez et

al. 2000).
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Through superior competitive ability, perhaps as a result of greater numbers or the formation

of cooperative super colonies, L. humile often displaces other ant species (Erickson 1971, Bond &

Slingsby 1984, Ward 1987, Cammell et al. 1996, Human & Gordon 1996, Suarez et al. 1998, Holway

1998a), but is known to be displaced itself by the red �re ant (S. invicta) (Porter et al. 1988). In

Bermuda, the big-headed ant, P. megacephala, appears to survive in the presence of L. humile but

does not coexist in the same locations; rather, their territory is in ux and the two species manage

to survive in a dynamic equilibrium (Haskins & Haskins 1988). Although L. humile reaches high

densities through cooperative colony behaviour, areas with an already rich variety of ant fauna

present do not show an increase in total ant biomass after L. humile establishment. This lack of

increase is because of the displacement of existing ant species (e.g. Holway 1998a).

The displacement of native ant species can cause existing mutualisms to be disrupted (Bond

& Slingsby 1984). For example, a fynbos ecosystem from the southwestern Cape, South Africa,

is swept by wild�res every 10-15 years and relies on native ants to bury seeds for regeneration.

Argentine ants wiped out two fynbos ant species, Anoplolepis custodiens and Pheidole capensis,

that bury larger seeds. Thus biodiversity is lost after a wild�re because larger seeds are not buried

and so the corresponding species cannot regenerate (De Kock 1990).

Ants are often part of soil processes, and these processes could be disrupted by ant species

being displaced by L. humile (Folgarait 1998).

The arrival of L. humile in Japan has led to signi�cantly less species diversity for communities

in urban environments where L. humile is present compared to where it is absent (Touyama et

al. 2003). In parks infested with L. humile, species such as Pheidole noda, Pheidole indica, and

Lasius japonicus, were absent. Touyama et al. (2003) suggests that L. humile is superior to these

species in traits such as mobility, recruitment ability, aggressiveness and omnivory. However, two

other species, Paratrechina sakurae and Camponotus vitiosus were less a�ected by L. humile’s

presence. Possibly the small body size of P. sakurae may reduce its competition for resources

such as nesting sites and food with the larger L. humile (Touyama et al. 2003) and additionally L.

humile rarely attacks P. sakurae (Miyake et al. 2002). The arboreal nesting habits of C. vitiosus

may allow it to avoid competition with L. humile (Touyama et al. 2003).

Holway (1999) investigated the mechanisms behind L. humile’s apparent superior competitive

ability. It was found that L. humile located baits and recruited other ants to them as quickly or

more quickly than native ants, irrespective of whether they occupied the same area. While indi-

vidual Argentine ant workers were unable to consistently overcome native ant workers, Argentine

ant colonies succeeded in displacing native ant colonies from baits, which suggests that numerical

advantage is vital to L. humile’s superior competitive ability.
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Harris (2002) compiled a table on the documented impacts of L. humile on community structure

and the processes of native ecosystems around the world (Table 5.1).

5.3.1 NZ Impact

In NZ L. humile has the potential to become a major household and garden pest reaching much

higher colony densities than in its native range (Suarez et al. 1999). The small size of individ-

ual ants allow L. humile to penetrate food containers (Davis & Van Schagen 1993), furthermore

individuals have the potential to spread disease by carrying pathogens on their bodies (e.g. Staphy-

lococcus, Candida, and Enterococcus Ipinza-Regla et al. 1985, Fowler et al. 1993).

L. humile are very aggressive towards other insect species so may threaten endangered native

invertebrates. Indirectly, the removal of native ant species and insects could threaten species

further up the food chain - especially those that rely on native ants or other invertebrates for

food, pollination, or seed dispersal. The extent of such ant interactions are currently unknown in

NZ.

Through weight of numbers L. humile also directly competes for nectar and honeydew with

other insects and birds (Suarez et al. 2000). Large numbers can also kill infant birds in the nest

(Newell & Barber 1913), and such attacks have already been observed in New Zealand (V. Van

Dyk pers. comm. cited in Harris 2002).

The current ant fauna of NZ consists of 40 species, approximately 11 of which are considered

endemic (Valentine & Walker 1991, Harris & Berry 2002) and their local populations could be

reduced in competition with L. humile. However, researchers consider no native ant species at risk

of extinction from L. humile, because of their wide geographical distribution and their occurrence

in indigenous forest (Harris 2002) which is generally not invaded by L. humile (Reimer 1993, Cole

et al. 1992).

Lester et al. (2003) have reported that L. humile attack honeybee hives in NZ, and competes

with honeybees for nectar from the owers of pohutukawa (Metrosideros excelsa A. Richard), New

Zealand bottlebrush (Knightia excelsa R. Brown), and agapanthus, a common exotic garden plant

(Agapanthus spp.). Argentine ants have also been observed to kill honeybees, steal honey and

destroy hives (Pas�eld 1968, Vega & Rust 2001). Linepithema humile have been reported by Lach

(2005) to harvest nectar from other species such as the Hawaiian �ohiâ tree. It seems L. humile has

potential to compete strongly against legitimate oral visitors for nectar on other New Zealand

plants.

When L. humile \farms" and tends Hemiptera such as aphids and scale insects for honeydew,
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Table 5.1: Summary of the main documented impacts globally of L. humile on native ecosystems. From Harris (2002)

Community

Structure

Ant diversity Interference competition and food mo-

nopolisation

Human & Gordon (1996), Holway

(1999)

Abundance and diversity of other

invertebrate species

Interference and resource competition;

predation on eggs, larvae and adults

Cole et al. (1992), Way et al. (1992),

Human & Gordon (1997)

Abundance of vertebrate species Interference and resource competition Suarez et al. (2000)

Community

processes

Pollination Competition for nectar with e�ective

pollinators

Buys (1987), Visser et al. (1996)

Seed dispersal / regeneration Displacement of specialist ants that

have co-evolved to assist seed dispersal

and seedling germination

Bond & Slingsby (1984), Giliomee

(1986)

Decomposition / nutrient cycling Changing the guild structure of the in-

vertebrate community

Ward (1987), De Kock (1990), Fol-

garait (1998)
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